Основы робототехники для начинающих: руководство изучения науки для «чайников»

Содержание:

С чем придется столкнуться

Путь к созданию умных машин долог и тернист, он требует много знаний и большого практического опыта, а значит переработки большого объема научно-технической информации.

Если профессионал в этой сфере решает проблемы практического значения, то «чайник» с азов осваивает робототехнику. Первая задача ученика – заставить робота, собранного своими руками, двигаться. Вторая – преодолевать препятствия. Когда начинающий решит эти задачи, можно переходить к их усложнению: например, «заставить» робота реагировать на свет, звук или прикосновение.

Постигать технические премудрости с нуля лучше в детстве, когда новая информация усваивается легче. Но и взрослым путь в робототехнику не закрыт. Имея способности и интерес к этой науке, взрослый может прийти к существенным результатам в создании роботов.

Боевые роботы

Боевым роботом называют автоматическое устройство, заменяющее человека в боевых ситуациях или при работе в условиях, несовместимых с возможностями человека, в военных целях: разведка, боевые действия, разминирование и т. п.

Беспилотник

Боевыми роботами являются не только автоматические устройства с антропоморфным действием, которые частично или полностью заменяют человека, но и действующие в воздушной и водной среде, не являющейся средой обитания человека (авиационные беспилотные с дистанционным управлением, подводные аппараты и надводные корабли).

В настоящее время большинство боевых роботов являются устройствами телеприсутствия, и лишь очень немногие модели имеют возможность выполнять некоторые задачи автономно, без вмешательства оператора.

В Технологическом институте Джорджии под руководством профессора Хенрика Кристенсена разработаны напоминающие муравьёв инсектоморфные роботы, способные обследовать здание на предмет наличия там врагов и мин-ловушек (доставляются к зданию «главным роботом» — мобильным роботом на гусеничном ходу).

Получили распространение в войсках и летающие роботы. На начало 2012 года военными во всём мире использовались около 10 тысяч наземных и 5 тысяч летающих роботов; 45 стран мира разрабатывало или закупало военных роботов.

Примеры из жизни

Технологии и системы, созданные при помощи робототехники — не редкость в современной жизни. Их можно встретить в любых сферах.

Зная о понятии и функциях дисциплин, несложно понять, что к ним относят:

  • станкостроение;
  • изготовление роботов;
  • промышленное автомобилестроение;
  • оргтехника (копировальные, факсимильные аппараты);
  • космическая, военная, авиационная техника;
  • тренажеры для подготовки водителей, пилотов, операторов;
  • медицина (клиническое, реабилитационное оборудование);
  • микромашины, используемые в средствах связи, мобильной технике, медицинском оборудовании;
  • контрольно-измерительные устройства.

Михаил, Московский энергетический институт

Поступил в МЭИ, потому что вуз закончили знакомые, и часто слышу о нем положительные отзывы. В вузе дают хорошие знания по математике и инженерной графике, считается что МЭИ в этом чуть ли не лучший. На наши лекции приходят студенты из других университетов. До этого учился в МИИТе, он совсем не оправдал ожиданий. Сейчас я от своего института в восторге. В отличие от многих других вузов, нас не грузят по гуманитарным дисциплинам, а ключевые предметы связаны с механикой. Мы не особо изучаем языки программирования: была легкая интрижка с С++ и все. А реализовывать свои проекты трудно, потому что нет ни человека, который поможет советом, ни хорошего оснащения, ни хорошего доступа к имеющемуся оборудованию. Если говорить про качество образования, то в предыдущем семестре у нас вел пары по одному предмету наш же староста, который сам ничего в этом не понимает. Нет вовлеченности и поощрения для создания проектов — это действительно огорчает в вузе. Мало практики, тонны теории. Без применения знаний это всё забывается на раз.

Вспомогательная литература по робототехнике

Нельзя сконструировать качественную роботизированную систему без глубоких теоретических знаний по роботостроению. Будущему профессионалу на начальном уровне также будет полезно изучение дополнительной литературы. По этой теме, кроме учебных пособий, существует множество книг.

Можно выделить следующие книги:

  1. Платт Чарльз «Электроника для начинающих». В книге последовательно изложено, как нужно проектировать и создавать электронные устройства в домашних условиях.
  2. Иванов Анатолий «Основы робототехники». В этом учебном пособии рассматриваются виды, классификация роботов, области применения РТУ и их роль в производственном процессе.
  3. Трон Себастьян и др. «Probabilistic Robotics». Объект внимания авторов – вероятностная робототехника. В ее основу положены математические методы систематизации. Специалисты предполагают появление роботов другого качества, с более высоким уровнем надежности.
  4. Зигварт Роланд «Introduction to Autonomous Mobile Robots». Книга посвящена мобильным автоматическим устройствам, имеющим возможность перемещения в пространстве. Автор освещает особенности мобильной робототехники со всех сторон.
  5. Кук Дэвид «Robot Building for Beginners». Автор детально описывает устройство умных машин, давая таким образом читателю представление о конструировании роботов.
  6. Бишоп Оуэн «Настольная книга разработчиков роботов». Это пособие рассчитано на новичков, автор знакомит читателя с конструированием робототехнических устройств.

Приобретаемые навыки

В результате освоения специальности выпускники приобретают следующие знания и умения:

  1. Владение одним иностранным языком.
  2. Анализ актуальности разрабатываемых продуктов.
  3. Разработка макетов инновационных машин и роботов.
  4. Создание специальных программ, способных управлять разрабатываемыми объектами мехатроники и робототехники.
  5. Составление технической документации для производства разнообразных деталей и модулей.
  6. Проектирование и составление особых схем для создания новых машин и роботов.
  7. Проведение экспериментальных работ на инновационных образцах.
  8. Умение осуществлять сборку проектируемых объектов.
  9. Обеспечение контроля за соблюдением всех необходимых норм и правил в процессе изготовления машин и роботов.
  10. Умение оформлять лицензии и патенты на вновь созданную продукцию.
  11. Постоянное совершенствование уже имеющихся продуктов, способность наладить их функционирование, а также осуществить их перепрограммирование.
  12. Составление инструкций по эксплуатации к производимой продукции.

Приобретаемые навыки

В результате освоения специальности выпускники приобретают следующие знания и умения:

  1. Владение одним иностранным языком.
  2. Анализ актуальности разрабатываемых продуктов.
  3. Разработка макетов инновационных машин и роботов.
  4. Создание специальных программ, способных управлять разрабатываемыми объектами мехатроники и робототехники.
  5. Составление технической документации для производства разнообразных деталей и модулей.
  6. Проектирование и составление особых схем для создания новых машин и роботов.
  7. Проведение экспериментальных работ на инновационных образцах.
  8. Умение осуществлять сборку проектируемых объектов.
  9. Обеспечение контроля за соблюдением всех необходимых норм и правил в процессе изготовления машин и роботов.
  10. Умение оформлять лицензии и патенты на вновь созданную продукцию.
  11. Постоянное совершенствование уже имеющихся продуктов, способность наладить их функционирование, а также осуществить их перепрограммирование.
  12. Составление инструкций по эксплуатации к производимой продукции.

Основные компоненты робототехники

Корпус большинства роботов состоит из отдельных подвижных и неподвижных частей. Вот основные из них:

Внутренний контроллер. Каждый робот оснащен контроллером — компьютерной операционной системой. Контроллер — это мозг любого робота. Он содержит всю необходимую информацию для выполнения задач и указаний.

Источник энергии. Роботам необходим источник энергии. Одни работают от батарей. Другие оснащены фотоэлементами, которые преобразуют солнечный свет в энергию. Механические роботы заводятся с помощью пружинного механизма.

Дистанционное управление. Роботы, которые работают на других планетах, такие как марсоход, оборудованы внутренними контроллерами, но ими также можно управлять с Земли.

Сенсоры света и звука. С их помощью робот может распознавать свет, исходящий от объектов, определять звуковые волны. Эта функция помогает либо обходить различные предметы, либо идти к ним навстречу. Также в корпус робота может быть встроено устройство распознавания голоса, с помощью которого человек отдает машине устные приказы.

Датчики давления. Некоторые роботы оборудованы датчиками давления, которые имитируют осязание. У этих сенсоров два назначения: они сообщают роботу о том, что он ударился о какой-нибудь предмет и должен сменить направление движения, а также позволяют правильно захватить и поднять объект.

Приводы — это «мышцы» роботов. В настоящее время самыми популярными двигателями в приводах являются электрические, но применяются и другие, использующие химические вещества или сжатый воздух. Перечислим все основные варианты приводов для робототехники: 

  • Двигатели постоянного тока: В настоящий момент большинство роботов используют электродвигатели, которые могут быть нескольких видов.
  • Шаговые электродвигатели: Как можно предположить из названия, шаговые электродвигатели не вращаются свободно, подобно двигателям постоянного тока. Они поворачиваются пошагово на определенный угол под управлением контроллера. Это позволяет обойтись без датчика положения, так как контроллеру точно известно, на сколько был сделан поворот. В связи с этим они часто используются в приводах многих роботов и станках с ЧПУ.
  • Пьезодвигатели: Современной альтернативой двигателям постоянного тока являются пьезодвигатели, также известные как ультразвуковые двигатели. Принцип их работы совершенно отличается: крошечные пьезоэлектрические ножки, вибрирующие с частотой более 1000 раз в секунду, заставляют мотор двигаться по окружности или прямой. Преимуществами подобных двигателей являются высокое нанометрическое разрешение, скорость и мощность, несоизмеримая с их размерами. Пьезодвигатели уже доступны на коммерческой основе и также применяются на некоторых роботах.
  • Воздушные мышцы: Воздушные мышцы — простое, но мощное устройство для обеспечения силы тяги. При накачивании сжатым воздухом, мышцы способны сокращаться до 40 % от своей длины. Причиной такого поведения является плетение, видимое с внешней стороны, которое заставляет мышцы быть или длинными и тонкими, или короткими и толстыми. Так как способ их работы схож с биологическими мышцами, их можно использовать для производства роботов с мышцами и скелетом, аналогичными мышцам и скелету животных.
  • Электроактивные полимеры: Электроактивные полимеры — это вид пластмасс, который изменяет форму в ответ на электрическую стимуляцию. Они могут быть сконструированы таким образом, что могут гнуться, растягиваться или сокращаться. Однако, в настоящее время нет ЭАП, пригодных для производства коммерческих роботов, так как все неэффективны или непрочны.
  • Эластичные нанотрубки: Это многообещающая экспериментальная технология, находящаяся на ранней стадии разработки. Отсутствие дефектов в нанотрубках позволяет этому волокну эластично деформироваться на несколько процентов. Человеческий бицепс может быть заменен проводом из такого материала диаметром 8 мм. Такие компактные «мышцы» могут помочь роботам в будущем обгонять и перепрыгивать человека.

Где используются роботы?

Современную медицину очень трудно представить без роботов. При лучевой терапии они способны учитывать движение опухоли при дыхании человека и действовать прицельно, не задевая здоровые ткани. Один из известных примеров — робот-хирург Da Vinci. Он проводит операцию через небольшие проколы, действуя микроскальпелями. При таком вмешательстве восстановление проходит гораздо быстрее, чем после обычной полостной операции.

Активное распространение получают автономные мобильные объекты — как военные, так и гражданские, в том числе транспортные и почтовые роботы. Ученые активно занимаются вопросом коллаборативного управления — это либо выполнение действий под супервизорным управлением человека, либо совместная работа двух роботов.

На различных производствах активно используются промышленные роботы, которые берут на себя все тяжелые действия и то, что требует высокой точности. Например, человек может варить металл с точностью до 1 миллиметра, а погрешность в действиях робота составляет сотые доли миллиметра. Современные автомобили собираются практически без участия человека. В сети есть много видеороликов с завода, где производят автомобили Tesla, и эта роботизированная линия завораживает.

Логистика — один из важных драйверов развития робототехники. Использование дронов и роботов на складе стало общемировой тенденцией. Например, на складах Amazon товары упаковывают роботы, что снижает операционные расходы компании на 20%. Товары обрабатываются быстрее, сокращается складская площадь, потому что роботы ее эффективнее используют.

Тот же Amazon активно продвигает доставку мелких грузов с помощью дронов, но пока в тестовом режиме. «Почта России» участвует в проекте по беспилотной доставке грузов, сейчас идут испытания дронов и проработка инфраструктуры. Компания «Яндекс» тоже разрабатывает роботов для доставки небольших грузов и еды. Но это небольшие колесные устройства, которые будут двигаться по городским тротуарам.

В книге «Рынок робототехники: угрозы и возможности для России» описаны рекордные показатели сектора образования: для обучающих программ в 2017 году купили 70 роботов, что составило 10% от общего объема продаж. Авторы книги также отмечают, что роботов используют для производства электроники и в химпроме, а в 2018 году интерес появился и у предприятий пищевой промышленности.

Как учат будущих робототехников?

Обучение начинается со школьных кружков, где дети создают первых роботов из конструктора Lego. Вообще, развитие робототехники в школах началось именно благодаря этой датской компании, которая в конце 1990-х придумала добавить к своим конструкторам программируемый блок, двигатели и датчики. Использование Lego в российских школах запустило первую волну образовательной робототехники, говорится в исследовании ВШЭ «Робототехника в России: образовательный ландшафт». Сейчас школьные кружки робототехники работают с учебно-методическими комплексами Lego. Детям показывают, что если к обычному конструктору добавить небольшую коробочку, то он станет самым настоящим роботом.

Программа «Робототехника» фонда «Вольное дело» Олега Дерипаски помогает детям с самого раннего возраста развивать творческие навыки и интерес к этой дисциплине. В первую очередь это образовательная программа. Ребят обучают робототехнике, мехатронике и программированию в образовательных центрах по всей России. Каждый год проходят инженерно-технические соревнования, на которых участники показывают результаты своей работы и вдохновляются для дальнейшего развития.

Например, может быть задание написать алгоритм, как взять яблоко и перенести его с одной точки на другую. Дальше им объясняют, что надо вытянуть руку вперед, разжать пальцы, взять яблоко и так далее. Дети начинают познавать робототехнику с таких простых заданий. Здесь даже не обязателен технический склад ума, гуманитарии тоже понимают, что такое алгоритмы, и могут применять их в жизни, говорит Сигинова.

По ее наблюдениям, постепенно дети отсеиваются, и к 14–16 годам остаются только самые мотивированные. Это сложный возраст, когда, с одной стороны, идет гормональная перестройка организма, а с другой — очень сильно возрастает нагрузка: школьники готовятся к ЕГЭ и определяются с будущей профессией. В робототехнике остаются только те, кому это действительно интересно и кто собирается поступать в вузы по направлению робототехники и мехатроники. Они активно участвуют в соревнованиях и олимпиадах, понимая, что за победу получат дополнительные плюсы при поступлении в ВУЗ.

Алена Азиатцева рассказывает, что на фестивалях всегда много участников и у детей есть возможность попробовать себя на разных площадках. Плюс проводятся ежегодные федеральные учебно-тренировочные сборы, где педагоги могут обучаться, чтобы потом привезти эти знания к себе в регионы. Есть вебинары, на которых тренеры могут задать вопросы по регламентам, если они что-то не поняли.

Franck V / Unsplash

Моя работа имеет смысл

Что я даю этому миру? Да, вопрос достаточно избитый, и в нем много патетики, но в той или иной форме он посещает очень многих. Деньги перестали радовать? Представляете, и такое возможно. Когда все, что ты делаешь, кажется мелким и незначительным.

Что делать?

Одна стилист всегда рекомендовала своим клиенткам отойти от зеркала на пять шагов. Хороший совет в любой ситуации.Большое видится на расстоянии. Каждый из нас выполняет работу, которая часто является лишь пазлом в одной огромной мозаике. Отойдите на пять шагов и посмотрите, действительно ли эта мозаика будет цельной и законченной, если вашего кусочка в ней не будет? Вы увидите, что нет.

Классификация мобильной робототехники по типу перемещения

Современные роботы, созданные на базе самых последних достижений науки и техники, применяются во всех сферах человеческой деятельности. Внешний вид и конструкция современных роботов могут быть весьма разнообразными.

Робототехника может перемещаться по любой поверхности, в воде и в воздухе. Так, по типу передвижения роботы бывают:

  • Колесные и гусеничные (наиболее распространенный вид роботов);
  • Шагающие;
  • Летающие — автопилоты и беспилотные летательные аппараты;
  • Ползающие — передвигаются по принципу змей и червей и применяются для поиска людей под обломками рухнувших зданий;
  • Плавающие — перемещаются в воде, подражая движениям рыб, и тем самым становятся бесшумными и очень маневренными;
  • Передвигающиеся по вертикальным поверхностям — действуют по принципу человека, взбираясь на стену с помощью выступов, или же с помощью специальных присосок.

Лидерами в производстве роботов на данный момент являются компании FANUC (Япония), KUKA (Германия) и ABB (Швеция, Швейцария).

Луиза, МГУ им. М. В. Ломоносова (филиал в Ташкенте)

Я поступила в филиал МГУ на факультет прикладной математики и информатики, чтобы научиться программировать. На деле оказалось, что здесь в основном преподают математику. Много предметов, начиная от мат анализа и линейной алгебры и заканчивая уравнениями математической физики. Но программирование проходим и сейчас изучаем C++, до этого изучали C, получили представления об Ассемблере и веб-разработке. Нагрузка в вузе огромная, при этом качество образования могло бы быть лучше. Не хватает времени на изучение чего-либо стороннего, тем не менее, я продолжу заниматься робототехникой.

Кем можно работать, получив образование в мехатронике и робототехнике

Прежде чем рассматривать конкретные профессии, которые существуют для специалистов в мехатронике и робототехнике, следует понимать, какие задачи смогут решать выпускники, получившие данное образование. Так, имея знания в рассматриваемой сфере, специалист может выполнять следующие функции на предприятии:

  • Создание оборудования и станков для обеспечения механизации производственных процессов.
  • Разработка техники различного назначения, в том числе и военной.
  • Исследование возможностей по улучшению уже имеющихся в использовании механизмов и роботов.
  • Работа над отдельными мехатронными системами, например — отдельными узлами автомобилей.
  • Разработка микроскопических роботов и электронных изделий.
  • Обслуживание и ремонт техники.
  • Написание программного обеспечения для робототехники.
  • Обучение робототехнике и мехатронике в рамках ВУЗов, школ и иных учреждений.
  • Составление документации об использовании техники.
  • Ведение научно-исследовательской и конструкторской деятельности.

Соответственно, перечень возможных профессий и конкретных специализаций, по которым могут работать специалисты в мехатронике и робототехнике — крайне широк. Например, к таким направлениям деятельности можно отнести следующие профессии:

  • Инженер-электроник. Специалисты в этой профессии занимаются широким спектром работ, связанных с созданием электроники. Наличие образования по мехатронике позволяет в полной мере устраиваться на работу в любой сфере, где требуется работа с электроникой в целом.
  • Инженер-электротехник. Учитывая сопряженность электроники и электротехники, получение образования в сфере мехатроники и робототехники дает возможность стать полноценным инженером-электротехником, в том числе и без получения дополнительных навыков, работая в самых разнообразных сферах.
  • Программист. Все робототехники таки или иначе изучают программирование, так как наличие этих знаний является крайне важным для современной мехатроники в целом. А значит — получают хорошую базу для трудоустройства в различных сферах, где требуется знание основ и принципов программирования.
  • Робототехник. К сожалению, специалисты в этой профессии сейчас не настолько востребованы, как в других, и поэтому по прямому профилю в своей специальности найти работу могут немногие выпускники. В то же время именно по этому направлению деятельности можно рассчитывать на наибольший размер оплаты труда и самые интересные перспективы.
  • Конструктор. Работа конструктора во многом подразумевает значительное количество творчества и генерации новых идей, равно как и сочетание их с педантичностью для проведения точных расчетов. Это достаточно интересная профессия, однако ее востребованность не слишком высока.
  • Педагог. Как специалист с высшим образованием, человек, получивший знания в сфере мехатроники и робототехники может стать преподавателем в ВУЗе, руководителем школьного кружка или каких-либо иных обучающих курсов.
  • Кибернетик. Специалисты по кибернетике изучают в первую очередь теоретические направления взаимодействия человека и техники, а также работу с передачей и обработкой информации в технических и социальных системах
  • Сервисный инженер. Любая техника нуждается в регулярном обслуживании и устранении неисправностей, и специалисты в мехатронике ценятся в том числе и в качестве сотрудников, которые обеспечивают безопасность, ремонт и обслуживание используемых роботов и иных средств автоматизации на производстве.

Роботы в России и в мире

Сначала разберемся в том, что считать роботами.

  • Робот — это любая система, которая получает информацию, обрабатывает ее и выполняет какие-то действия, исходя из полученных данных.
  • У робота обязательно есть датчики, исполнительные элементы, например манипулятор и микроконтроллер, который обрабатывает полученную информацию.
  • Его можно перепрограммировать, чтобы он выполнял другие действия.

То есть кофемашина, созданная для выполнения определенной функции, к роботам не относится.

«Робот имеет широкий диапазон решений, и он может по-разному отреагировать на ту или иную ситуацию, — говорит Анастасия Сигинова, руководитель проектов компании „Аврора Роботикс“. — Например, в роботе-пылесосе заложена программа, он может объехать территорию и построить карту. Если у него будет стоять задача пылесосить в определенной комнате, то он найдет ее на своей карте и поедет именно туда».

Jelleke Vanooteghem / Unsplash

Анастасия Сигинова считает, что если механизмом управляют вручную, то это уже не робот, а управляемая машина. Хотя специалисты тоже спорят о том, что относить к роботам. В военной технике роботами называют любые механизмы с телеуправлением: например, если танком управляют из командного центра, то он уже считается роботом.

Компания Sberbank Robotics ежегодно представляет анализ мирового рынка робототехники. В отчете за 2019 год говорится, что наибольшая роботизация промышленности сейчас в Южной Корее: там насчитывается 710 роботов на 10 тысяч человек на производстве. При этом среднемировой показатель — 85, в Китае — 97, а в России всего 4. С одной стороны, это говорит о том, что мы порядочно отстали в плане автоматизации, а с другой — в России есть большой потенциал для роста направления.

Алиса Конюховская и Валерия Цыпленкова в книге «Рынок робототехники: угрозы и возможности для России» пишут, что в области сервисной робототехники у российских производителей больше шансов занять лидирующие позиции на мировом рынке, так как российский и мировой рынки сейчас формируются. По данным Национальной ассоциации участников рынка робототехники (НАУРР), с 2015 по 2017 год продажи в российских компаниях росли на 50% в год. Лидирующие области сервисной робототехники в России — роботы для общественных мест, в образовании и медицине. Около 20% сервисных роботов экспортируется.

К тому же есть высокий интерес к робототехническим специальностям. За последние пять лет они регулярно попадают в различные списки наиболее востребованных инженерных профессий. По специальности «Мехатроника и робототехника» обучают в 30 вузах в 19 городах.

Востребованность специальности мехатроника и робототехника сейчас и в будущем

Как можно понять из самого описания специализации и профессий по направлению мехатроники и робототехники, эти профессии являются в первую очередь профессиями будущего. Это, с одной стороны, добавляет им привлекательности — с каждым днем востребованность работников в этой сфере повышается, равно как и их зарплаты. Но с другой — пока еще данная отрасль является очень узкой и предполагает жесткую конкуренцию и сложности с трудоустройством.

В то же время, данная специализация уже хорошо востребована за границей, и поэтому если целью является именно эмиграция с последующим трудоустройством в иной стране, то выбирать эту специальность — разумное и оправданное решение. Но в любом случае, рассчитывать на простую, рутинную и стабильную работу в этой сфере не придётся, и если у абитуриента имеется желание просто работать, а не достигать вершин и покорять их — лучше выбрать иное направление для профессиональной самореализации.

Преимущества окончания магистратуры

Балакавриат нередко приравнивают к колледжу. Обучение в магистратуре идет по более углубленным программам. Магистры являются более подготовленными, технически подкованными, что дает им преимущество не только при трудоустройстве, но и в оплате труда.

К другим достоинствам магистратуры можно отнести:

  • подготовка профессионалов международного уровня: у магистра больше шансов получить хорошую должность в зарубежной компании;
  • освоение навыков подготовки самостоятельных исследований в конкретной научной области;
  • возможность заблаговременно выбрать сферу деятельности, улучшить свою подготовку.

Мехатроники трудятся над разработкой неизвестных систем, развивают стартапы, становятся частью команд научных институтов, частных и государственных предприятий.

Области робототехники

Применяются роботы самых различных сферах, но основными являются следующие:

  • Промышленность: промышленные роботы;
  • Исследовательская деятельность: роботы-ученые, исследователи;
  • Боевые роботы: безпилотники, роботы-саперы, охрана и безопасность;
  • Нанотехнологии: микро- и нано-роботы в исследовательских и медицинских целях;
  • Домашние технологии: бытовые роботы, пылесосы, мойщики окон и персональные.

В сфере промышленности роботы позволяют выполнять большой объем работ с высокой скоростью и точностью. Они позволяют решать такие задачи, с которыми невозможно справиться человеческими силами.

Очень многие места нашей планеты и за ее пределами не исследованы по той причине, что делать это человеку невозможно. Например, о том, что творится в океанных глубинах и в космосе мы знаем благодаря роботам-исследователям.

Рост инновационных технологий позволяет оптимистически смотреть в будущее. Робототехника стремительно развивается, открывая человечеству новые возможности.

Какие знания необходимы для создания робототехники?

Современная робототехника строится на знаниях из области программирования, механики, мехатроники, электротехники, электроники и автоматического управления.

Для освоения робототехники на базовом уровне достаточно школьных знаний по математике и физике. Без понимания физики движения и принципов работы механизмов и электродвигателей сложно собрать функционирующего робота.

Затем идут информатика и проектирование

Так как программирование необходимо в робототехнике не меньше математики, важно разбираться в компьютерных науках и информационных системах. Проектирование поможет создавать удобные продукты

Но знания из других инженерных дисциплин тоже будут полезны.

Основные направления в изучении робототехнике:

  • Машиностроение изучает физические составляющие робота — его «тело». Подтемы — механика и сопротивление материалов. Большинство курсов в этом направлении ориентированы на физический дизайн и приведение робота в действие.
  • Электротехника и электроника или «нервная система» занимаются электрическими системами внутри робота, встроенными системами, низкоуровневым программированием и теорией управления. Обычно это автоматизация, которая строится вокруг контроля робота.
  • Информатика — многие специалисты пришли в робототехнику благодаря увлечению компьютерными науками. Инженеры этого направления концентрируются на программном обеспечении робота и высокоуровневом программировании. Среди тем — искусственный интеллект, навигация, техническое зрение, обработка естественного языка и так далее.

Области применения робототехники

Применяются роботы самых различных сферах, но основными являются следующие:

  • Промышленность: промышленные роботы;
  • Исследовательская деятельность: роботы-ученые, исследователи;
  • Боевые роботы: безпилотники, роботы-саперы, охрана и безопасность;
  • Нанотехнологии: микро- и нано-роботы в исследовательских и медицинских целях;
  • Домашние технологии: бытовые роботы, пылесосы, мойщики окон и персональные.

В сфере промышленности роботы позволяют выполнять большой объем работ с высокой скоростью и точностью. Они позволяют решать такие задачи, с которыми невозможно справиться человеческими силами.

Очень многие места нашей планеты и за ее пределами не исследованы по той причине, что делать это человеку невозможно. Например, о том, что творится в океанных глубинах и в космосе мы знаем благодаря роботам-исследователям.

Рост инновационных технологий позволяет оптимистически смотреть в будущее. Робототехника стремительно развивается, открывая человечеству новые возможности.

Преимущества окончания магистратуры

Балакавриат нередко приравнивают к колледжу. Обучение в магистратуре идет по более углубленным программам. Магистры являются более подготовленными, технически подкованными, что дает им преимущество не только при трудоустройстве, но и в оплате труда.

К другим достоинствам магистратуры можно отнести:

  • подготовка профессионалов международного уровня: у магистра больше шансов получить хорошую должность в зарубежной компании;
  • освоение навыков подготовки самостоятельных исследований в конкретной научной области;
  • возможность заблаговременно выбрать сферу деятельности, улучшить свою подготовку.

Мехатроники трудятся над разработкой неизвестных систем, развивают стартапы, становятся частью команд научных институтов, частных и государственных предприятий.

Виды деятельности инженера-робототехника

У этих специалистов всегда очень много работы. Поэтому, выбрав эту сферу деятельности, вы точно не будете скучать на рабочем месте. Рассмотрим подробнее, чем занимается инженер-робототехник во время работы.

Проведение расчетов

Конструирование роботов — задача не из легких. Здесь, как и в постройке здания, для хорошего результата очень важны точные расчеты. А так как инженер — это не дизайнер, на него ложатся все операции с цифрами и формулам. Так что дружба с физикой и математикой — обязательное условие для робототехника.

Проектирование

Инженеры — это те же самые чертежники. Вот только если раньше все чертили на бумаге, сегодня это делается в специальных программах на компьютере. Это в значительной степени облегчило процесс самого проектирования. Но теперь возникла еще одна трудность: прежде чем что-то начертить, нужно уметь пользоваться этими программами.

Анализ информации

Сбор и анализ данных — тоже задача этих специалистов: информация о работе конструируемого аппарата, разбор удачных и неудачных моментов. Сюда также входит сбор предварительных данных перед разработкой самого робота: где будет использоваться, для чего, кому пригодится и т.д.

Плюсы и минусы мехатроники и робототехники как специальности

До того, как принимать окончательное решение о поступлении на обучение по специальности «Мехатроника и робототехника», следует основательно взвесить все «за» и «против» этого шага. К однозначно положительным сторонам данной специализации можно отнести следующие ее особенности:

  • Высокие зарплаты. В сфере робототехники ведущие специалисты даже в России могут зарабатывать более 300 тыс. рублей в месяц, если участвуют в важнейших инфраструктурных проектах, военной или космической отрасли.
  • Востребованность за рубежом. Эффективные специалисты по мехатронике и робототехнике с легкостью находят возможность для работы на международные корпорации и имеют превосходные перспективы для трудоустройства за границей с очень высоким уровнем заработной платы.
  • Широкий спектр компетенций. Получив образование в рассматриваемой сфере, человек получает возможность работать не только непосредственно по направлению робототехники, но в целом становится компетентным в широкой сфере отраслей специалистом, что упрощает возможности по трудоустройству.
  • Профессия будущего. Робототехника становится с каждым годом все более востребованной и высокооплачиваемой сферой деятельности, и поэтому выбор такого образования — хороший залог обеспечения себя трудоустройством и высокой оплатой труда не только сегодня, но и в будущем.

Конечно, есть у данного образовательного направления и ряд существенных недостатков, с которыми тоже лучше будет ознакомиться заранее. К минусам этой специализации можно отнести следующие факторы:

  • Низкая востребованность на российском рынке труда. Непосредственно в сфере робототехники специалисты в Российской Федерации не слишком востребованы — и вакансий по прямому направлению деятельности сейчас крайне мало, а конкуренция на них очень высока.
  • Слабая образовательная база. Так как мехатроника и робототехника является относительно новой специальностью, образовательные программы в этом направлении могут очень серьезно отличаться в зависимости от ВУЗа и часто не дают достаточного количества необходимых для успешного трудоустройства знаний и навыков.
  • Большая конкуренция среди абитуриентов. Поступить на обучение по данному направлению может быть очень сложно, так как количество мест и ВУЗов, где изучается эта дисциплина, крайне ограниченно.

Профессия робототехник: зарплата специалистов

Остался самый важный вопрос: какая зарплата у таких специалистов? И ответ не самый простой, ведь заработная плата может очень сильно различаться. Это зависит от разных факторов:

  • уровня профессионализма;
  • места работы;
  • города и страны работы или заказчика;
  • сложности проектов;
  • наличия спонсоров и инвестиций, финансовой поддержки.

Молодым специалистам в научно-исследовательских институтах России могут предложить заработную плату от 15 000 до 30 000 рублей. В Москве и Санкт-Петербурге оплата со старта будет выше. А тем, кто хочет не только сделать научную карьеру, но и прилично зарабатывать, лучше рассмотреть работу в IT-компаниях, на стратегически важных военных объектах или в крупных коммерческих организациях. Там инженеры-изобретатели могут получать до 100 000 рублей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector