Главные формулы для егэ по физике

Содержание:

Электростатика и электродинамика – формулы по физике

Закон Кулона F=k∙q1∙q2/R 2 Напряженность электрического поля E=F/q Напряженность эл. поля точечного заряда E=k∙q/R 2 Поверхностная плотность зарядов σ = q/S Напряженность эл. поля бесконечной плоскости E=2πkσ Диэлектрическая проницаемость ε=E0/E Потенциальная энергия взаимод. зарядов W= k∙q1q2/R Потенциал φ=W/q Потенциал точечного заряда φ=k∙q/R Напряжение U=A/q Для однородного электрического поля U=E∙d Электроемкость C=q/U Электроемкость плоского конденсатора C=S∙ε∙ε0/d Энергия заряженного конденсатора W=qU/2=q²/2С=CU²/2 Сила тока I=q/t Сопротивление проводника R=ρ∙ℓ/S Закон Ома для участка цепи I=U/R Законы послед. соединения I1=I2=I, U1+U2=U, R1+R2=R Законы паралл. соед. U1=U2=U, I1+I2=I, 1/R1+1/R2=1/R Мощность электрического тока P=I∙U Закон Джоуля-Ленца Q=I 2 Rt Закон Ома для полной цепи I=ε/(R+r) Ток короткого замыкания (R=0) I=ε/r Вектор магнитной индукции B=Fmax/ℓ∙I Сила Ампера Fa=IBℓsin α Сила Лоренца Fл=Bqυsin α Магнитный поток Ф=BSсos α Ф=LI Закон электромагнитной индукции Ei=ΔФ/Δt ЭДС индукции в движ проводнике Ei=ВℓΥSinα ЭДС самоиндукции Esi=-L∙ΔI/Δt Энергия магнитного поля катушки Wм=LI 2 /2 Период колебаний кол. контура T=2π ∙√LC Индуктивное сопротивление XL=ωL=2πLν Емкостное сопротивление Xc=1/ωC Действующее значение силы тока Iд=Imax/√2, Действующее значение напряжения Uд=Umax/√2 Полное сопротивление Z=√(Xc-XL) 2 +R 2

Оптика

Закон преломления света n21=n2/n1= Υ1/ Υ2 Показатель преломления n21=sin α/sin γ Формула тонкой линзы 1/F=1/d + 1/f Оптическая сила линзы D=1/F max интерференции: Δd=kλ, min интерференции: Δd=(2k+1)λ/2 Диф. решетка d∙sin φ=k λ

Квантовая физика

Ф-ла Эйнштейна для фотоэффекта hν=Aвых+Ek, Ek=Uзе Красная граница фотоэффекта νк = Aвых/h Импульс фотона P=mc=h/ λ=Е/с

Физика атомного ядра

Закон радиоактивного распада N=N0∙2 — t / T Энергия связи атомных ядер

t=t1/√1-υ 2 /c 2 ℓ=ℓ0∙√1-υ 2 /c 2 υ2=(υ1+υ)/1+ υ1∙υ/c 2 Е = mС 2

Формулы по физике для егэ 2021 с пояснениями по заданиям

Вход в тесты

Более 2000 тестов с видео-решениями по математике. Более 1000 — по физике.

Подготовка к ЕГЭ. Подготовка к ОГЭ (бывший ГИА).

Справочник

Формулы, теоремы, решение типовых заданий…

На нашем WiKi-справочнике есть разделы по: геометрии, стереометрии, алгебре, физике и др.

Проверь себя

Проверьте себя самостоятельно!

Насколько хорошо Вы (или ваши дети) знают предмет?

А Вы готовы к контрольной?

Записаться на занятия

Телефоны:

  • +7 (910) 874 73 73 +7 (905) 194 91 19 +7 (831) 247 47 55
  • По математике
    • Подготовка к ЕГЭ Подготовка к ОГЭ Онлайн тесты к ЕГЭ и ОГЭ Формулы к ЕГЭ

По физике

  • Подготовка к ЕГЭ Формулы для ЕГЭ Репетитор студенту

По скайпу

  • Репетитор онлайн «Видео Репетитор»

Новости

  • Новости образования Расписание ЕГЭ 2017 Расписание ОГЭ 2017 Расчёт баллов по ОГЭ 2015 Минимальные баллы 2015 Статьи 2012-2015
    • ГИА
      • Расписание ГИА 2013 Расписание ГИА 2014

ЕГЭ

  • Расписание ЕГЭ 2015 Расписание ЕГЭ 2014 Расписание ЕГЭ 2013 ЕГЭ по физике

Обучение

  • Аренда сайта Лекции онлайн Преподавателям

Стоимость О нас Контакты

За одного скидка 15%

За двоих скидка 30%!

«Ученье свет, а неученье — тьма»

Александр Васильевич Суворов

+7 (910) 874-73-73

X=X0+Υ0∙t+(a∙t 2 )/2 S= (Υ 2 —Υ0 2 ) /2а S= (Υ+Υ0) ∙t /2

Формулы по физике для ЕГЭ

Электроемкость C q U.

25.05.2017 18:03:22

2017-05-25 18:03:22

Теория к заданию 23 из ЕГЭ по физике

6.1. Основные понятия и законы квантовой физики

Фотоэффектом называется потеря телами электронов под действием света. Существует критическая длина волны (своя для каждого металла), с превышением которой фотоэффект прекращается. Т.к. эта длина волны лежит в длинноволновой области спектра, то её принято называть красной границей фотоэффекта
 Для фотоэффекта Эйнштейн привлёк представление о фотонах (квантах света), предложенное Планком для объяснения теплового излучения тел. Уравнение Эйнштейна для фотоэффекта имеет вид:
Постулаты Бора:
1) электроны движутся в атоме по стационарным орбитам, на которых они обладают энергией, но энергии не излучают
 Таких стационарных орбит в атоме несколько. Нижняя орбита называется основным состоянием атома, остальные — возбуждённым состоянием атома;
2) переходя с одной стационарной орбиты на другую, электрон испускает или поглощает квант электромагнитной энергии, чья энергия пропорциональна частоте:

6.2. Основные понятия и законы ядерной физики

 В 1932 г. советский физик Иваненко и немецкий физик Гейзенберг предложили протонно-нейтронную модель ядра атома. По этой модели ядро атома состоит из двух видов элементарных частиц — протонов и нейтронов. Так как в целом атом электрически нейтрален, то число протонов в ядре равно числу электронов в атомной оболочке. Следовательно, число протонов равно атомному номеру элемента (Z) таблицы Менделеева. Сумму числа протонов Z и числа нейтронов N называют массовым числом и обозначают A.
 Под энергией связи понимают ту энергию, которая необходима для полного расщепления ядра на отдельные нуклоны. Энергию связи атомных ядер можно рассчитать по формуле
 Величину ∆M называют дефектом масс, который определяется по формуле
где mp — масса протона, mn — масса нейтрона.
 Самопроизвольное испускание неких частиц атомами получило название радиоактивность. Было установлено, что радиоактивные элементы испускают три вида излучения. Их назвали α-, β- и γ- лучами.
 Природа α-, β- и γ- лучей различна. γ-лучи — это электромагнитные волны с очень маленькой длиной волны (от 10−8 до 10−11 см). β-лучи — это электроны, движущиеся со скоростями, близкими к скорости света. α-лучи — это поток ядер атомов гелия (дважды ионизированные атомы гелия). α-, β- и γ- лучи испускаются атомами радиоактивных элементов при их превращениях.
 Для α- и β-распада действует правило смещения: при α-распаде ядро теряет положительный заряд 2e, а масса его убывает на 4 атомных единицы. В результате элемент смещается на 2 клетки к началу периодической системы. Если α-распад претерпевает элемент X, то в результате получается элемент Y :
 При β-распаде из ядра вылетает электрон. Он символически изображается -1e, т. к. масса его очень мала. После β-распада элемент смещается на одну клетку к концу таблицы Менделеева:
 При γ-распаде заряд не меняется, масса ядра меняется ничтожно мало.
Число α-распадов
 Число β-распадов

Вопросы для самопроверки

  1. Что характеризует механическая мощность?

  2. Какие существуют единицы измерения мощности в физике?

  3. Какая из единиц измерения считается устаревшей?

  4. Мощность можно назвать скалярной величиной? Что это означает?

  5. Как из формулы нахождения мощности получить работу?

  6. Какой буквой обозначается мощность в механике, а какой — в электротехнике?

  7. Какую работу производит за 30 минут устройство мощностью 600 Вт?

  8. Как узнать напряжение в сети, если мы знаем мощность подключенного к ней прибора и силу тока, проходящую через прибор?

  9. Если в течение 1 часа автомобиль №1 едет со скоростью 60 км/ч, а автомобиль №2 — со скоростью 90 км/ч, одинаковую ли мощность они развивают в это время?

  10. Допустим, автобус отвез пассажиров из города А в город В за 1 час. Если он планирует вернуться в город А пустым по той же трассе и потратить на это 1 час, ему понадобится развить такую же мощность или меньшую?

Тригонометрия

Пусть имеется прямоугольный треугольник:

Тогда, определение синуса:

Определение косинуса:

Определение тангенса:

Определение котангенса:

Основное тригонометрическое тождество:

Простейшие следствия из основного тригонометрического тождества:

Синус двойного угла:

Косинус двойного угла:

Тангенс двойного угла:

Котангенс двойного угла:

Тригонометрические формулы сложения

Синус суммы:

Синус разности:

Косинус суммы:

Косинус разности:

Тангенс суммы:

Тангенс разности:

Котангенс суммы:

Котангенс разности:

Тригонометрические формулы преобразования суммы в произведение

Сумма синусов:

Разность синусов:

Сумма косинусов:

Разность косинусов:

Сумма тангенсов:

Разность тангенсов:

Сумма котангенсов:

Разность котангенсов:

Произведение синусов:

Произведение синуса и косинуса:

Произведение косинусов:

Формулы понижения степени

Формула понижения степени для синуса:

Формула понижения степени для косинуса:

Формула понижения степени для тангенса:

Формула понижения степени для котангенса:

Формула половинного угла для тангенса:

Формула половинного угла для котангенса:

Формулы приведения задаются в виде таблицы:

Электродинамика, оптика и СТО

Еще один раздел физики, по объему сопоставимый с механикой, – электродинамика. Он достаточно сложен и дается учащимся нелегко. Электродинамика изучает взаимодействие тел с электромагнитными полями, излучение и свойства тока. На экзамене одиннадцатиклассникам необходимо будет подтвердить свои знания по таким темам.

Электрозаряд и электрополе. Закон Кулона.

Потенциальность и напряжение.

Сила тока. Законы Ома для полной цепи и участка цепи.

Сопротивление. Работа и мощность тока.

Магнитная индукция. Суперпозиция магнитных полей.

Закон Фарадея. Правило Ленца.

Колебательный контур и сохранение в нем энергии. Формула Томсона.

Переменный ток. Производство электроэнергии, ее производство и потребление.

Распространение, преломление и отражение света.

Линзы рассеивающие и собирающие.

Интерференция, дифракция и дисперсия света.

К этому разделу примыкают и темы, посвященные основам теории относительности. Это скорость света в вакууме, открытия Эйнштейна, энергия и импульс частицы. В КИМ владение материалом по электродинамике и СТО проверяется при помощи упражнений №13–18 первой части, а также №26, 31 и 32 второй части.

Для глубокой проработки курса электродинамики целесообразней использовать специальные пособия. В сжатом виде основные формулы из этого раздела представлены в кодификаторе (см. рисунки ниже).

Оптика. Элементарная геометрическая

В пределах изучения видимого спектра излучения, который называется светом, формулы по физике 11 класса описывают работу линз, а также их взаимных сочетаний. Рассматривается также основное правило отражения, которое гласит, что каждый материал имеет предельный угол отражения. Он зависит от характеристик среды, а точнее, от показателя преломления, который может быть определен по справочниками и представляет собой, грубо говоря, коэффициент оптической плотности материала по отношению к воздуху. Величина предельного угла отражения может быть найдена по формуле:

sin a0 = 1/n

Здесь

a0- предельный угол отражения, измеряется в градусах;

n — коэффициент преломления среды, для которой производится вычисление. Численный коэффициент, не имеющий единицы измерения.

Явление предельного угла отражения объясняет, почему свет отражается по-разному, например, от поверхности воды или бензина. Он нужен для оценки качества оптических приборов, степени ослабления светового потока в системах линз и так далее. Широко применяется при проектировании когерентных источников света и систем лазеров. С его помощью можно оценить потери, связанные с затуханием той части света, которая падает на границу разделения сред под неправильным углом.

Работайте с буквами, а не цифрами

Оформление задач, у которых проверяется решение, должно иметь результат в виде большой формулы с буквами. Возьмите за правило не подставлять числа до последнего шага.

В чём реальная польза букв?

  • Точность. Если разделить на калькуляторе 1 на 3, а потом умножить на 6, то получится не 2, а 1,999999998. В ЕГЭ часто ответы получаются красивыми, поэтому дробь с периодом может вызвать лишние сомнения и расфокусировку.
  • Возможность проверить размерность. Да-да, так просили делать в 7-м классе. 2 минуты на проверку размерности – выгодное вложение времени для увеличения вероятности правильного ответа большой задачи.
  • Экономия времени. Если ответ получился в виде дроби, то она может сократиться. Это реальная экономия времени на подсчёт численного ответа.

Колебания

Уравнение описывающее физические системы способные совершать гармонические колебания с циклической частотой ω:

Решение предыдущего уравнения является уравнением движения для гармонических колебаний и имеет вид:

Период колебаний вычисляется по формуле:

Частота колебаний:

Циклическая частота колебаний:

Зависимость скорости от времени при гармонических механических колебаниях выражается следующей формулой:

Максимальное значение скорости при гармонических механических колебаниях:

Зависимость ускорения от времени при гармонических механических колебаниях:

Максимальное значение ускорения при механических гармонических колебаниях:

Циклическая частота колебаний математического маятника рассчитывается по формуле:

Период колебаний математического маятника:

Циклическая частота колебаний пружинного маятника:

Период колебаний пружинного маятника:

Максимальное значение кинетической энергии при механических гармонических колебаниях задаётся формулой:

Максимальное значение потенциальной энергии при механических гармонических колебаниях пружинного маятника:

Взаимосвязь энергетических характеристик механического колебательного процесса:

Энергетические характеристики и их взаимосвязь при колебаниях в электрическом контуре:

Период гармонических колебаний в электрическом колебательном контуре определяется по формуле:

Циклическая частота колебаний в электрическом колебательном контуре:

Зависимость заряда на конденсаторе от времени при колебаниях в электрическом контуре описывается законом:

Зависимость электрического тока протекающего через катушку индуктивности от времени при колебаниях в электрическом контуре:

Зависимость напряжения на конденсаторе от времени при колебаниях в электрическом контуре:

Максимальное значение силы тока при гармонических колебаниях в электрическом контуре может быть рассчитано по формуле:

Максимальное значение напряжения на конденсаторе при гармонических колебаниях в электрическом контуре:

Переменный ток характеризуется действующими значениями силы тока и напряжения, которые связаны с амплитудными значениями соответствующих величин следующим образом. Действующее значение силы тока:

Действующее значение напряжения:

Мощность в цепи переменного тока:

Трансформатор

Если напряжение на входе в трансформатор равно U1, а на выходе U2, при этом число витков в первичной обмотке равно n1, а во вторичной n2, то выполняется следующее соотношение:

Коэффициент трансформации вычисляется по формуле:

Если трансформатор идеальный, то выполняется следующее соотношение (мощности на входе и выходе равны):

В неидеальном трансформаторе вводится понятие КПД:

Волны

Длина волны может быть рассчитана по формуле:

Разность фаз колебаний двух точек волны, расстояние между которыми l:

Скорость электромагнитной волны (в т.ч. света) в некоторой среде:

Скорость электромагнитной волны (в т.ч. света) в вакууме постоянна и равна с = 3∙108 м/с, она также может быть вычислена по формуле:

Скорости электромагнитной волны (в т.ч. света) в среде и в вакууме также связаны между собой формулой:

При этом показатель преломления некоторого вещества можно рассчитать используя формулу:

Квантовая физика и элементы астрофизики

Наиболее трудна для понимания старшеклассниками квантовая физика, изучающая квантовую теорию поля, квантовую механику и математическое описание процессов. Разрабатываться это направление начало только в XX веке, благодаря работам Эйнштейна, Планка, Шредингера, Гейзенберга и других ученых. В школьной программе оно занимает не так много места, как другие разделы, поэтому количество заданий по квантовой физике несколько меньше.

Остановимся на некоторых элементах содержания, которые необходимо знать, чтобы успешно пройти испытание.

Гипотеза и формула Планка. Фотон, его энергия и импульс.

Фотоэффект, уравнение Эйнштейна. Волны де Бройля.

Модель атома. Работы Бора. Фотоны, их поглощение и излучение.

Массовое число и заряд ядра.

Строение Солнечной системы. Характеристики звезд и наука об их происхождении.

В экзаменационной работе квантовой физике и астрофизике посвящены задания №19–21 и №24 первой части. Задачи №26, 27 и 32 основаны на знании школьниками нескольких разделов: кроме квантовой физики, еще механики и электродинамики. Основные формулы, имеющие отношение к этой теме, вынесены в отдельную таблицу кодификатора.

Изучения одной теории по физике для подготовки к ЕГЭ недостаточно, нужно еще применять эти знания на практике, поэтому важную роль играет умение решать задачи. Участники должны быть способны анализировать графики и таблицы, интерпретировать результаты экспериментов, выявлять соответствия, разбираться в изменении физических величин в процессах.

Перед выпускниками школ с хорошим знанием физики и высоким баллом ЕГЭ открываются неплохие перспективы дальнейшего образования. А талантливый студент или аспирант вполне может трудоустроиться в крупную компанию и в полной мере реализовать свой потенциал.

Уравнение Менделеева – Клайпертона. Закон Дальтона.

Электродинамика, оптика и СТО

Гипотеза и формула Планка.

17.09.2019 2:55:00

2019-09-17 02:55:00

Геометрия в пространстве (стереометрия)

Главная диагональ куба:

Объем куба:

Объём прямоугольного параллелепипеда:

Главная диагональ прямоугольного параллелепипеда (эту формулу также можно назвать: «трёхмерная Теорема Пифагора»):

Объём призмы:

Площадь боковой поверхности прямой призмы (P – периметр основания, l – боковое ребро, в данном случае равное высоте h):

Объём кругового цилиндра:

Площадь боковой поверхности прямого кругового цилиндра:

Объём пирамиды:

Площадь боковой поверхности правильной пирамиды (P – периметр основания, l – апофема, т.е. высота боковой грани):

Объем кругового конуса:

Площадь боковой поверхности прямого кругового конуса:

Длина образующей прямого кругового конуса:

Объём шара:

Площадь поверхности шара (или, другими словами, площадь сферы):

Основные теоретические сведения

Импульс тела

Импульсом (количеством движения) тела называют физическую векторную величину, являющуюся количественной характеристикой поступательного движения тел. Импульс обозначается р. Импульс тела равен произведению массы тела на его скорость, т.е. он рассчитывается по формуле:

Направление вектора импульса совпадает с направлением вектора скорости тела (направлен по касательной к траектории). Единица измерения импульса – кг∙м/с.

Изменение импульса одного тела находится по формуле (обратите внимание, что разность конечного и начального импульсов векторная):

где: pн – импульс тела в начальный момент времени, pк – в конечный. Главное не путать два последних понятия.

Абсолютно упругий удар – абстрактная модель соударения, при которой не учитываются потери энергии на трение, деформацию, и т.п. Никакие другие взаимодействия, кроме непосредственного контакта, не учитываются. При абсолютно упругом ударе о закрепленную поверхность скорость объекта после удара по модулю равна скорости объекта до удара, то есть величина импульса не меняется. Может поменяться только его направление. При этом угол падения равен углу отражения.

Абсолютно неупругий удар – удар, в результате которого тела соединяются и продолжают дальнейшее своё движение как единое тело. Например, пластилиновый шарик при падении на любую поверхность полностью прекращает свое движение, при столкновении двух вагонов срабатывает автосцепка и они так же продолжают двигаться дальше вместе.

Закон сохранения импульса

При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу. Если на систему тел не действуют внешние силы со стороны других тел, такая система называется замкнутой.

В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой. Этот фундаментальный закон природы называется законом сохранения импульса (ЗСИ). Следствием его являются законы Ньютона. Второй закон Ньютона в импульсной форме может быть записан следующим образом:

Как следует из данной формулы, в случае если на систему тел не действует внешних сил, либо действие внешних сил скомпенсировано (равнодействующая сила равна нолю), то изменение импульса равно нолю, что означает, что общий импульс системы сохраняется:

Аналогично можно рассуждать для равенства нулю проекции силы на выбранную ось. Если внешние силы не действуют только вдоль одной из осей, то сохраняется проекция импульса на данную ось, например:

Аналогичные записи можно составить и для остальных координатных осей. Так или иначе, нужно понимать, что при этом сами импульсы могут меняться, но именно их сумма остается постоянной. Закон сохранения импульса во многих случаях позволяет находить скорости взаимодействующих тел даже тогда, когда значения действующих сил неизвестны.

Сохранение проекции импульса

Возможны ситуации, когда закон сохранения импульса выполняется только частично, то есть только при проектировании на одну ось. Если на тело действует сила, то его импульс не сохраняется. Но всегда можно выбрать ось так, чтобы проекция силы на эту ось равнялась нулю. Тогда проекция импульса на эту ось будет сохраняться. Как правило, эта ось выбирается вдоль поверхности по которой движется тело.

Многомерный случай ЗСИ. Векторный метод

В случаях если тела движутся не вдоль одной прямой, то в общем случае, для того чтобы применить закон сохранения импульса, нужно расписать его по всем координатным осям, участвующим в задаче. Но решение подобной задачи можно сильно упростить, если использовать векторный метод. Он применяется если одно из тел покоится до или после удара. Тогда закон сохранения импульса записывается одним из следующих способов:

В этих формулах буквой υ обозначены скорости тел до соударения, а буквой u обозначены скорости тел после соударения. Из правил сложения векторов следует, что три вектора в этих формулах должны образовывать треугольник. Для треугольников применяется теорема косинусов. Если правильно записать соответствующую теорему косинусов, то зачастую получается уравнение из которого можно найти нужную величину. Однако, иногда к правильно записанной теореме косинусов еще нужно будет добавить правильно записанный закон сохранения энергии (смотрите следующий раздел). В этом случае получится система уравнений из которых наверняка можно будет найти нужную величину.

Словарь ЕГЭ по физике

  • Шероховатая поверхность — в задаче присутствует сила трения, её обязательно нужно учесть.
  • Гладкая поверхность — означает, что в задаче можно пренебречь силой трения.
  • Небольшое (маленькое) тело — тело, размерами которого в условиях данной задачи можно пренебречь.
  • Лёгкая пружина, нить и т.п. — массой указанного тела можно пренебречь.
  • «Пластилиновый шар, двигаясь по гладкой горизонтальной плоскости, столкнулся с покоящимся металлическим шаром и прилип к нему» — абсолютно неупругий удар, импульс сохранился, но механическая энергия — нет, часть энергии ушла в тепло или другие типы энергии.
  • «Тело равномерно перемещают по горизонтальной поверхности, прикладывая к нему постоянную силу» — ключевое слово здесь «равномерно». Это означает, что, по второму закону Ньютона, сумма всех сил равна нулю.
  • Теплопроводящий сосуд — означает, что при медленном перемещении поршня процесс можно считать изотермическим, так как температура содержимого успевает сравняться с температурой окружающей среды.
  • «В калориметре…» — теплообменом с окружающей средой можно пренебречь.
  • Однородный стержень — сделан из одного материала, масса равномерно распределена по его объёму.
  • Малые колебания — амплитуда колебаний некоторой величины достаточно мала, чтобы колебания происходили по закону синуса или косинуса. При больших амплитудах колебаний эти закономерности нарушаются и перестают быть гармоническими. В частности, для математического маятника колебания можно считать малыми только в случае отклонения на небольшой угол α, такой, что sin α ≈ α.
  • Шёлковая нить — шёлк является диэлектриком, поэтому данная нить не проводит электрический ток.
  • Точечный источник света — источник, размерами которого можно пренебречь. Все предметы от него дают тень с чёткими границами.
  • Протяжённый источник света — источник, размерами которого нельзя пренебрегать ни в коем случае. Предметы в данном случае отбрасывают тень с нечёткими границами. Её можно разделить на тень и полутень.

Перевод нужно делать каждый раз, когда вы впервые читаете задачу.

Термодинамика

Количество теплоты (энергии) необходимое для нагревания некоторого тела (или количество теплоты выделяющееся при остывании тела) рассчитывается по формуле:

Теплоемкость (С — большое) тела может быть рассчитана через удельную теплоёмкость (c — маленькое) вещества и массу тела по следующей формуле:

Тогда формула для количества теплоты необходимой для нагревания тела, либо выделившейся при остывании тела может быть переписана следующим образом:

Фазовые превращения. При парообразовании поглощается, а при конденсации выделяется количество теплоты равное:

При плавлении поглощается, а при кристаллизации выделяется количество теплоты равное:

При сгорании топлива выделяется количество теплоты равное:

Уравнение теплового баланса (ЗСЭ). Для замкнутой системы тел выполняется следующее (сумма отданных теплот равна сумме полученных):

Если все теплоты записывать с учетом знака, где «+» соответствует получению энергии телом, а «–» выделению, то данное уравнение можно записать в виде:

Работа идеального газа:

Если же давление газа меняется, то работу газа считают, как площадь фигуры под графиком в p–V координатах. Внутренняя энергия идеального одноатомного газа:

Изменение внутренней энергии рассчитывается по формуле:

Первый закон (первое начало) термодинамики (ЗСЭ):

Для различных изопроцессов можно выписать формулы по которым могут быть рассчитаны полученная теплота Q, изменение внутренней энергии ΔU и работа газа A. Изохорный процесс (V = const):

Изобарный процесс (p = const):

Изотермический процесс (T = const):

Адиабатный процесс (Q = 0):

КПД тепловой машины может быть рассчитан по формуле:

Где: Q1 – количество теплоты полученное рабочим телом за один цикл от нагревателя, Q2 – количество теплоты переданное рабочим телом за один цикл холодильнику. Работа совершенная тепловой машиной за один цикл:

Наибольший КПД при заданных температурах нагревателя T1 и холодильника T2, достигается если тепловая машина работает по циклу Карно. Этот КПД цикла Карно равен:

Абсолютная влажность рассчитывается как плотность водяных паров (из уравнения Клапейрона-Менделеева выражается отношение массы к объему и получается следующая формула):

Относительная влажность воздуха может быть рассчитана по следующим формулам:

Потенциальная энергия поверхности жидкости площадью S:

Сила поверхностного натяжения, действующая на участок границы жидкости длиной L:

Высота столба жидкости в капилляре:

При полном смачивании θ = 0°, cos θ = 1. В этом случае высота столба жидкости в капилляре станет равной:

При полном несмачивании θ = 180°, cos θ = –1 и, следовательно, h < 0. Уровень несмачивающей жидкости в капилляре опускается ниже уровня жидкости в сосуде, в которую опущен капилляр.

Физика 7: все формулы и определения

«Физика 7: все формулы и определения» — это Справочник по физике в 7 классе, доступный для скачивания в 2-х форматах: КРУПНО (формат PDF, на 3-х страницах) и МЕЛКО (формат JPG, на 1-й странице).

1 файл(ы) 255.55 KB

Физика 7 класс: все формулы и определения МЕЛКО на одной странице

1 файл(ы) 549.72 KB

В пособии «Физика 7: все формулы и определения» представлено 24 формулы
и определения за весь курс Физики 7 класса:

Название формулы (закона, правила) Формулировка закона (правила) Формула
1. Цена деления шкалы прибора

Для определения цены деления (ЦД) шкалы прибора необходимо:
1) из значения верхней границы (ВГ) шкалы вычесть значение нижней границы (НГ) шкалы и результат разделить на количество делений (N);
2) найти разницу между значениями двух соседних числовых меток (А и Б) шкалы и разделить на количество делений между ними (n).

ЦД = (ВГ — НГ) / N

ЦД = (Б — А) / n

2. Скорость

Скорость (ʋ) — физическая величина, численно равна пути (S), пройденного телом за единицу времени (t).

ʋ = S / t
3. Путь

Путь (S) — длина траектории, по которой двигалось тело, численно равен произведению скорости (ʋ) тела на время (t) движения.

S = ʋ*t
4. Время движения

Время движения (t) равно отношению пути (S), пройденного телом, к скорости (ʋ) движения.

t = S / ʋ
5. Средняя скорость

Средняя скорость (ʋср) равна отношению суммы участков пути (S1, S2, S3, …), пройденного телом, к промежутку времени (t1 + t2+ t3+ …), за который этот путь пройден.

ʋср = (S1 + S2 + S3 + …) / (t1 + t2 + t3 + …)
6. Сила тяжести

Сила тяжести — сила (FТ), с которой Земля притягивает к себе тело, равная произведению массы (т) тела на коэффициент пропорциональности (g) — постоянную величину для Земли. (g = 9,8 H/кг)

FТ = m*g
7. Вес

Вес (Р) — сила, с которой тело действует на горизонтальную опору или вертикальный подвес, равная произведению массы (т) тела на коэффициент (g).

Р = m*g
8. Масса

Масса (т) — мера инертности тела, определяемая при его взвешивании как отношение силы тяжести (Р) к коэффициенту (g).

т = Р / g
9. Плотность

Плотность (ρ) — масса единицы объёма вещества, численно равная отношению массы (т) вещества к его объёму (V).

ρ = m / V
10. Момент силы

Момент силы (М) равен произведению силы (F) на сё плечо (l)

М = F*l
11. Условие равновесия рычага

Рычаг находится в равновесии, если плечи (l1, l2) действующих на него двух сил (F1, F2) обратно пропорциональны значениям сил.

a) F1 / F2 = l1 / l2

б) F1*l1 = F2*l2

12. Давление

Давление (р) — величина, численно равная отношению силы (F), действующей перпендикулярно поверхности, к площади (S) этой поверхности

p = F / S
13. Сила давления

Сила давления (F) — сила, действующая перпендикулярно поверхности тела, равная произведению давления (р) на площадь этой поверхности (S)

F = р*S
14. Давление однородной жидкости

Давление жидкости (р) на дно сосуда зависит только от её плотности (ρ) и высоты столба жидкости (h).

p = g ρ h
15.Закон Архимеда

На тело, погруженное в жидкость (или газ), действует выталкивающая сила — архимедова сила (FВ). равная весу жидкости (или газа), в объёме (VТ) этого тела.

FВ = ρ*g*Vт
16. Условие плавания тел

Если архимедова сила (FВ) больше силы тяжести (FТ) тела, то тело всплывает.

FВ> FТ
17. Закон гидравлической машины

Силы (F1, F2), действующие на уравновешенные поршни гидравлической машины, пропорциональны площадям (S1, S2) этих поршней.

F1 / F2 = S1 / S2
18. Закон сообщаю-щихся сосудов

Однородная жидкость в сообщающихся сосудах находится на одном уровне (h)

h = const
19. Механическая работа

Работа (A) — величина, равная произведению перемещения тела (S) на силу (F), под действием которой это перемещение произошло.

А = F*S
20. Коэффициент полезного действия механизма (КПД)

Коэффициент полезного действия (КПД) механизма — число, показывающее, какую часть от всей выполненной работы (АВ) составляет полезная работа (АП).

ɳ = АП / АВ *100%
21. Потенциальная энергия

Потенциальная энергия (ЕП) тела, поднятого над Землей, пропорциональна его массе (т) и высоте (h) над Землей.

ЕП = m*g*h
22. Кинетическая энергия

Кинетическая энергия (ЕК) движущегося тела пропорциональна его массе (m) и квадрату скорости (ʋ2).

ЕК = m*ʋ2 / 2
23. Сохранение и превращение механической энергии

Сумма потенциальной (ЕП) и кинетической (ЕК) энергии в любой момент времени остается постоянной.

EП + EК = const
24. Мощность

Мощность (N) — величина, показывающая скорость выполнения работы и равная:а) отношению работы (А) ко времени (t), за которое она выполнена;б) произведению силы (F), под действием которой перемещается тело, на среднюю скорость (ʋ) его перемещения.

N = A / t

N = F*ʋ

12 (двенадцать) самых необходимых (самых востребованных) формул по физике в 7 классе:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector