Какие технологии из космической отрасли мы используем ежедневно

[править] Примечания

  1. Украинский «Южмаш» частично приостановил работу из-за нехватки заказов. 29 января 2015
  2. Украинское ракетостроение: от Челомея до Коломойского. 10 июня 2014
  3. Украинское ракетостроение: от Челомея до Коломойского. 10 июня 2014
  4. Украинское ракетостроение: от Челомея до Коломойского. 10 июня 2014
  5. Украинское ракетостроение: от Челомея до Коломойского. 10 июня 2014
  6. Украинское ракетостроение: от Челомея до Коломойского. 10 июня 2014
  7. Украинское ракетостроение: от Челомея до Коломойского. 10 июня 2014
  8. Украинское ракетостроение: от Челомея до Коломойского. 10 июня 2014
  9. Украинское ракетостроение: от Челомея до Коломойского. 10 июня 2014
  10. Украинское ракетостроение: от Челомея до Коломойского. 10 июня 2014
  11. Украинское ракетостроение: от Челомея до Коломойского. 10 июня 2014
  12. Украинское ракетостроение: от Челомея до Коломойского. 10 июня 2014
  13. Украинское ракетостроение: от Челомея до Коломойского. 10 июня 2014
  14. Украинское ракетостроение: от Челомея до Коломойского. 10 июня 2014
  15. Украинское ракетостроение: от Челомея до Коломойского. 10 июня 2014
  16. „Южмаш“ застыл в ожидании гособоронзаказа. 2 февраля 2015
  17. О состоянии и перспективах Южмаша. 21 января 2015
  18. „Южмаш“ застыл в ожидании гособоронзаказа. 2 февраля 2015
  19. „Южмаш“ практически остановил работу. 25 января 2015
  20. ЗАЯВЛЕНИЕ по поводу распространения недостоверной информации о событиях на предприятии. 29 января 2015
  21. Роскосмос обойдется без «Зенита». 2 февраля 2015
  22. Южмаш теряет 80 % дохода из-за отказа Роскосмоса от ракет Зенит. 2 февраля 2015
  23. Украинское ракетостроение: от Челомея до Коломойского. 10 июня 2014
  24. Украинское ракетостроение: от Челомея до Коломойского. 10 июня 2014
  25. Украинское ракетостроение: от Челомея до Коломойского. 10 июня 2014
  26. Пуск украинской ракеты-носителя «Циклон-4» откладывается на 2014 год. 10 апреля 2013
  27. Бразилия отказывается от проекта космического сотрудничества с Украиной. 10 апреля 2015
  28. Украина думает над переносом стартовой площадки нового ракетно-космического комплекса «Циклон-4» из Бразилии в США. 20 мая 2015
  29. Правительство Украины намерено привлечь $400 млн на развитие космической сферы. 28 марта 2013

Сегменты и доходы [ править ]

Три основных сектора космической промышленности: производство спутников, производство вспомогательного наземного оборудования и космическая промышленность. Сектор производства спутников состоит из производителей спутников и их подсистем. Сектор наземного оборудования состоит из таких производственных единиц, как мобильные терминалы, шлюзы, станции управления, VSAT , спутниковые антенны прямого вещания и другое специализированное оборудование. Сектор запуска состоит из служб запуска, производства транспортных средств и производства подсистем.

Что касается доходов мировой спутниковой индустрии, то в период с 2002 по 2005 год они оставались на уровне 35–36 миллиардов долларов США. При этом большая часть доходов была получена от сектора наземного оборудования, а наименьшая — от сектора запуска. Космические услуги оцениваются примерно в 100 миллиардов долларов США. В промышленности и смежных отраслях занято около 120 000 человек в странах ОЭСР то время как в космической отрасли России занято около 250 000 человек. Капитальные запасы оценили стоимость 937 спутников на орбите Земли в 2005 году примерно в 170–230 миллиардов долларов США. В 2005 году страны ОЭСР выделили около 45 миллиардов долларов на космическую деятельность; доход от космических продуктов и услуг оценивается в 110–120 миллиардов долларов США в 2006 году (по всему миру).

«Даурия»: коммерчески успешная платформа наноспутников

Куда лучше шли дела другого производителя малых спутников — Dauria Aerospace, созданной бывшим владельцем «Техносилы» в 2011 году Михаилом Кокоричем.

До 2014 года компания имела несколько филиалов за рубежом, однако после сконцентрировала все работы — офис и производство, — в России. Кроме того, владельцам удалось привлечь «Сколково» и ряд зарубежных венчурных фондов.

Это позволило уже в 2015 году продать свои первые спутники Perseus-M1 и Perseus-M2 для дистанционного зондирования Земли американской компании Aquila Space. Аппараты уже находились на орбите.

За ними последовал космический аппарат DX1 на основе малой спутниковой платформы DX, созданной специалистами компании. Выведенный в космос, он позволил провести отработку экспериментальных технологий, которые должны были лечь в основу широкой линейки спутников Dauria.

Один из них — проект Pyxis для создания сети телекоммуникационных спутников высокоэллиптических орбит, способных обеспечить связь даже в приполярных регионах Земли.

Ещё одна платформа, АТОМ, для создания геостационарных космических аппаратов рабочей массы до тонны. Высокая эффективность аппаратов позволяет выводить их с минимальными затратами, обеспечив высокую конкурентноспособность.

Однако с Dauria Aerospace связана самая серьезная экономическая катастрофа частной российской космонавтики: в 2017 году заказанные Роскосмосом спутники МКА-Н производства Dauria не вышли на связь после старта.

Многомиллионный иск и отказ госкорпорации от расследования ситуации фактически обанкротил компанию, которая в декабре 2018 года прекратила даже информационную деятельность.

Колонизация далеких планет

Профессор планетологии и астробиологии в Биркбеке Ян Кроуфорд считает колонизацию Марса вполне реальной, но добавляет, что сначала необходимо набраться компетенций и опыта на Луне. Открыть на ней новые технологии и только потом лететь на дальние планеты. Для успешного покорения других планет нужно изучить влияние невесомости и космической радиации на человека и найти решения для комфортной жизни в разных частях космоса.

Советница NASA Ариэль Вальдман считает, что человечество должно объединить свои усилия для переселения на Марс и другие планеты. Она надеется, что колонизация не вызовет большие политические дебаты и будет похожа на миграцию в другую страну. Якоб Ланге, партнер архитектурного бюро Bjarke Ingels Group думает, что для начала людям нужно ответить на вопрос: как они хотят жить на других планетах: чтобы окружающая реальность была похожа на фильм из научной фантастики или напоминала земную архитектуру?

Идея отправить людей на Марс и другие планеты существует давно, но Генри Херцфельд, директор Института космической политики Университета Джорджа Вашингтона считает, что мы не можем говорить о ее осуществлении, пока не освоим новые технологии. Сложно говорить о дальнейшем видении картины, если мы не можем найти способ долгосрочного удержания человека в космосе. По его мнению, наше будущее пребывание в космическом пространстве зависит от того, какой бюджет будет уходить в отрасль и на какие цели будут его тратить. Чем больше будет вложений, тем быстрее мы освоим новые технологии и сможем переехать на другие планеты.

Футурология

Что, если не Марс: куда можно «переехать» в пределах Солнечной системы

Историческая справка

Идея освоения околоземного пространства возникла в России еще в XIX веке, когда Константин Циолковский представил свою теорию полетов в космос. Однако практическое воплощение началось после Великой Отечественной войны, когда на базе немецкой ракеты ФАУ-2 были созданы первые отечественные разработки ракетной техники.

В мае 1946 года постановлением правительства СССР было создано опытное конструкторское бюро (ОКБ) по разработке ракетной техники под руководством генерального конструктора С. П. Королева. Впоследствии на базе ОКБ функционирует ведущее советское научно-космическое объединение «Энергия».

В 1955 году состоялся первый удачный запуск стратегической баллистической ракеты Р-5, а в 1957 г. была создана межконтинентальная баллистическая ракета Р-7, давшая старт космической эпохе. Именно на ее модификации в октябре 1957 года был запущен в космос первый искусственный спутник Земли.

Далее на базе простой и надежной конструкции ракеты Р-7 было создано множество модификаций космических кораблей, в том числе и «Восток-1», на котором Ю. А. Гагарин совершил первый в истории человечества пилотируемый полет в околоземное пространство. За прошедший с 1957 года период на ракетах семейства Р-7 осуществлено свыше 1800 космических запусков.

В 1960-1980 гг. советская ракетно-космическая промышленность развивалась, являлась стратегическим направлением экономики и оборонного комплекса страны. Развал СССР и кризис 90-х не обошел стороной отрасль. К началу 2000 г. из-за значительного сокращения государственного финансирования и оттока квалифицированных кадров она оказалась в сложной ситуации. Для выживания в этот непростой период многие российские компании пошли на широкую кооперацию и создание совместных предприятий с западными партнерами.

К 2005 году на фоне роста экономики государственная поддержка отрасли существенно возросла, а принятие амбициозных федеральных программ по освоению космоса позволило приступить к модернизации предприятий комплекса.

История и тенденции

Космическая промышленность начала развиваться после Второй мировой войны , когда ракеты, а затем и спутники попали в военные арсеналы, а затем нашли применение в гражданских целях. Он сохраняет значительные связи с правительством. В частности, индустрия запуска имеет значительное участие правительства, при этом некоторые пусковые платформы (например, космический шаттл ) находятся в ведении правительства. Однако в последние годы частные космические полеты становятся реальностью, и даже крупные правительственные агентства, такие как НАСА , начали полагаться на частные службы запуска. Некоторые будущие разработки космической отрасли, которые все чаще рассматриваются, включают новые услуги, такие как космический туризм .

С 2004 по 2013 год общее количество орбитальных запусков по странам / регионам составило: Россия: 270, США: 181, Китай: 108, Европа: 59, Япония: 24, Индия: 19 и Бразилия: 1.

Соответствующие тенденции в космической отрасли в 2008–2009 годах были описаны следующим образом:

  • появление новых спутниковых операторов;
  • растущий спрос на спутники фиксированной связи и развивающийся рынок мобильных спутниковых услуг ;
  • стабильный объем заказов на коммерческую спутниковую связь;
  • стабильная работа стартового сектора;
  • устойчивость к финансовому кризису;
  • развивающиеся рынки для таких услуг, как диапазон Ka и дистанционное зондирование .

Что такое «Сфера»?

«Сфера» — программа «Роскосмоса», которая подразумевает комплексное развитие космических информационных технологий до 2030 года. Также она включает в себя запуск группы спутников для зондирования Земли из космоса: к 2030 году планируется запустить более 500 объектов. Также будут запущены 300 спутников для обеспечения работы интернета вещей, что позволит увеличить общую емкость российской спутниковой инфраструктуры до 430 Гбит/с.

В июне 2021 годв в рамках XIV Международного навигационного форума «Навитех-2021» прошел конгресс «Сфера», где в деталях рассказали о ближайших перспективах программы и обсудили планы по развитию космической отрасли. В 2022 году представят новый спутник, на который «Роскосмос» планирует потратить ₽7 млрд, а реализация всей программы обойдется в ₽800 млрд, лишь ₽300 млрд из которых составят бюджетные средства.

Какого размера бывают спутники?

Все аппараты весом свыше 1 т считаются большими спутниками. Малые же разделяются на следующие категории:

  • миниспутники (от 100 до 500 кг);
  • микроспутники (от 10 до 100 кг);
  • наноспутники (легче 10 кг);
  • кубсаты (10х10х10 см и весом до 1,3 кг);
  • покеткубы (5х5х5 см и до 250 гр);
  • пикоспутники (от 100 г до 1 кг).

Ближайшие космические миссии

Продолжительный успех освоения космоса зависит от результатов, которые мы получим из ближайших миссий. Предлагаем список экспедиций, за результатами которых стоит следить.

  • JOICE — 2022. Автоматическая межпланетная станция Европейского космического агентства отправится к Юпитеру и будет исследовать планету и ее спутники в течение трех лет.
  • Psyche — 2022. Космическая миссия отправится к металлическому астероиду, который вращается вокруг Солнца между Марсом и Юпитером. Это железо-никелевое ядро, аналогичное тому, что находится в центре нашей планеты. Его изучение поможет узнать, как формируются планеты земного класса.
  • Europa Clipper — 2025. Миссия изучит спутник Европа газового гиганта Юпитера. Ученые планируют выяснить, может ли ледяная луна поддерживать условия жизни.
  • Plato — 2026. Космический телескоп Plato отправится исследовать экзопланеты и искать желтых и оранжевых карликов, подобных нашему Солнцу.

Поиск решений

Работы над созданием многоразовых ракет-носителей ведутся на протяжении многих десятилетий. Появление надёжных космических кораблей, которые смогут использоваться для большого количества пусков, снизит затраты на проведение космических миссий, что, в свою очередь, ускорит освоение космического пространства.

В 1971 году в США по поручению NASA началась разработка многоразовых транспортных космических кораблей Space Shuttle. Изначально планировалось, что каждый из шести построенных шаттлов произведёт порядка 100 полётов к орбите. Однако на практике удалось произвести суммарно только 135 запусков.

  • Орбитальный корабль «Буран» приземлился на космодроме Байконур (слева) и Многоразовый транспортный космический корабль NASA «Колумбия»

Полёты шаттлов сопровождались трагическими случаями. В 1986 году из-за технической неисправности в момент взлёта взорвался корабль Challenger, на борту которого находились семь американских астронавтов.

В 2003 году на входе в атмосферу дезинтегрировался шаттл Columbia с шестью американцами и одним израильтянином на борту.

В 2011 году эксплуатация программы шаттлов была прекращена.

В СССР в 1976 году был начат проект по разработке многоразовой транспортной ракеты «Энергия-Буран», первый и единственный запуск которой осуществлён в 1988 году. В начале 1990-х программа была закрыта.

Также по теме


Звёздный плацдарм: почему в США заявили, что теряют превосходство над другими странами в космосе

США теряют превосходство над другими странами в космической сфере. Обеспокоенность по этому поводу выразил командующий Космическими…

Одновременно с созданием советского «Бурана» в США велись разработки многоразовой одноступенчатой ракеты в рамках проекта Delta Clipper корпорации McDonnell Douglas. Было произведено несколько испытательных полётов, последний из которых в 1996 году закончился пожаром. В результате корабль оказался настолько сильно повреждён, что его восстановление признали нецелесообразным. Вскоре из-за невозможности решения технических проблем с топливной системой проект был свёрнут.

В 2015 году тема многоразовых ракет снова оказалась в центре внимания после того, как компании SpaceX Илона Маска удалось осуществить успешное возвращение и посадку на стартовую площадку первой ступени ракеты-носителя Falcon 9. Впервые совершить повторный запуск удалось в марте 2017 года. С тех пор по 2020 год включительно SpaceX удалось провести ещё несколько успешных пусков.

По замыслу главы компании Илона Маска, после того как технологию поставят на поток, один космической запуск будет обходиться в $43 млн. Для сравнения, цена пуска одной ракеты Atlas V компании United Launch Alliance составляет в среднем $225 млн. В свою очередь, цена одного запуска шаттла обходилась примерно в $450 млн.

Хроника событий

В мае 2021 года ракета-носитель «Союз-2.1б», стартовавшая с космодрома Восточный, успешно вывела на орбиту британские спутники OneWeb. Помимо того, что это был очередной удачный старт с нового космодрома, запуск запомнился еще следующим: он позволил стране установить новый рекорд в своей современной истории по числу удачных стартов.

Предыдущий установили в 1993-м, когда страна выполнила 58 успешных запусков подряд. Этому рекорду (как, впрочем, и новому) далеко до советского: в 1983-1984 годах СССР смог осуществить 185 успешных пусков подряд.

Последним на сегодня серьезным инцидентом была авария пилотируемого корабля «Союз МС-10», которая произошла в октябре 2018-го. К счастью, система спасения сработала успешно и оба члена экипажа — россиянин Алексей Овчинин и американец Тайлер Хейг — вернулись домой.

2020: Рогозин назвал основные цели развития космонавтики в России

Основной целью развития космонавтики в РФ является экспансия человечества в космосе, использование результатов деятельности для обороны страны и роста уровня жизни. Об этом 26 декабря 2020 года сообщил ТАСС Информационное агентство России со слов генерального директора Роскосмоса Дмитрий Рогозин.

Экспансия человечества в космосе, а также использование результатов космической деятельности для обеспечения стратегической обороны страны, роста качества жизни народа, развития прорывных технологий и проведения фундаментальных научных исследований происхождения Земли и Вселенной, — написал Рогозин на своей странице в в ответ на вопрос пользователя, каковы цели РФ в космосе.

В декабре 2020 года заместитель гендиректора по международному сотрудничеству Роскосмоса Сергей Савельев во время круглого стола в Совете Федерации заявил, что особая роль в освоении космического пространства отводится исследованию и добыче минеральных космических ресурсов.

По его мнению, в будущем ожидается жесткая конкуренция за доступ к тем ресурсам небесных тел, разработка которых потребует наименьших затрат и наибольшей практической отдачи

Замгендиректора госкорпорации добавил, что с учетом значительных финансово-временных затрат важно принять решение о целесообразности добычи полезных ископаемых, так как полученные результаты должны быть востребованы.

В чем главные трудности

  • Долгий и очень дорогой цикл разработки, особенно в ракетостроении и космических запусках. На создание и тестирование рабочих прототипов уходит пять-семь лет, и все это время компания не получает никакой прибыли. Чтобы развивать подобные проекты, нужны не просто инвесторы, а спонсоры или безвозмездные гранты. К примеру, на разработку ушло $500 млн, а с момента выпуска до первого успешного старта прошло восемь лет;
  • Существует множество ограничений для работы в космосе. Например, чтобы подняться на высоту более 100 км (формальная граница, за которой начинается космическое пространство), нужна специальная лицензия. Для полетов в стратосфере (на высоте около 30 км) нужно закрывать воздушное пространство для других судов;
  • Пилотируемые полеты еще и сопряжены с большим риском для жизни и здоровья экипажа. Поэтому к ним предъявляются максимально жесткие требования — технические и правовые. Любые ошибки в этой сфере приводят к существенным проблемам для компании, включая судебные разбирательства, закрытие проектов или потерю финансирования;
  • Частные космические проекты не могут существовать в отрыве от государственной космической программы. Поэтому космический бизнес развивается только там, где есть технологическая база, регулярные космические запуски и площадки для них;
  • Для развития космических проектов необходимы также фундаментальные научные исследования, которые напрямую зависят от господдержки в этой отрасли.

Инженер-робототехник

Он разрабатывает роботизированные автоматические системы, в том числе с применением технологий искусственного интеллекта — одно из ведущих направлений современной науки. Инженеры-робототехники в космической отрасли создают и программируют аппараты для исследования космоса и космических объектов. Среди последних достижений космической робототехники — робот-помощник астронавта на борту космической станции и робот для переноски тяжестей и помощи в экстремальных ситуациях, которые могут произойти на орбите. Российская робототехника пока отстаёт от зарубежной, но в ближайших планах — выход на мировой уровень.

Где работать: в конструкторских бюро авиации и космонавтики, в научно-исследовательских институтах, предприятиях космической отрасли (НПО им. С.А.Лавочкина, НПО «Андроидная техника», Кластер космических технологий и телекоммуникаций фонда «Сколково», Институт проблем механики РАН, ЦНИИ робототехники и технической кибернетики, Научно-испытательный центр ракетно-космической промышленности, «Объединённая ракетно-космическая корпорация», Ракетно-космическая корпорация «Энергия» им. С. П. Королёва, Центр эксплуатации объектов наземной космической инфраструктуры, АО «Российские космические системы»).

Где учат:

Бонус для тех, кто дочитал до конца

Тогда вот вам ещё несколько занимательных фактов из космической отрасли на мировом уровне:

  • Илон Маск успешно запустил ракету с 27 двигателями. Технически это прорыв, так как трудно заставить их работать одновременно.
  • Учёные всех стран смотрят в сторону многоразовых технологий. А Илон Маск уже ее осуществил.
  • Индия побила мировой рекорд и вывела на орбиту 104 спутника за один запуск.
  • Наши ученые тестируют ядерный двигатель. На нем до Марса можно будет долететь за полтора месяца, а не за полтора года, как на химическом.
  • Ну и напоследок: только наши учёные реализовали в условиях невесомости… Туалет! И стоит он $19 млн. Американцы предлагали своим астронавтам потерпеть. Ну или пользоваться подгузниками.

Как выбрать вуз: 3 базовых критерия, 7 важных и еще несколько просто интересных

21 мая

44382

48

Читать позже

Космические технологии, которые мы будем использовать в ближайшие годы

Биопринтер

Российские ученые в 2016 году создали рабочий прототип биопринтера «Орган.Авт», который может печатать микроорганы и ткани. В 2018 году его решили запустить в космос. На МКС напечатали хрящевую ткань человека, а также ткань щитовидной железы мыши. Результаты признали успешными

Создание новых клеток и тканей в космосе понадобилось по нескольким причинам. Во-первых, отсутствие гравитации позволяет печатать объект сразу со всех сторон, а не послойно, как на Земле. Во-вторых, не приходится использовать токсичные соли гадолиния, которые обычно используются в экспериментах в земных лабораториях. Это повышает выживаемость создаваемых клеточных структур.

Футурология

Футуролог Томас Фрей — о будущем биопринтинга и бессмертии человека

Когда такой принтер войдет в повседневность и людям смогут пересаживать органы, напечатанные на орбите, пока неизвестно.

Переработка пластика

Для переработки пластика в космосе используют 3D-принтер Refabricator. Он разработан компанией Tethers Unlimited и уже работает на МКС. Принтер-гибрид может как перерабатывать пластиковые отходы, так и отпечатывать новые предметы. Как это происходит? Использованный во время экспедиции пластик загружают в принтер. Далее он плавит мусор и делает из него волокна для дальнейшей 3D-печати инструментов и пластиковых запчастей. В дальнейшем этот прибор пригодится не только космонавтам в длительных полетах, но и людям на Земле.

3D-принтер на МКС

Фотобиореактор

В Москве команда инженеров в 2018 году создала фотобиореактор, который умеет выращивать водоросли. Это прозрачный сосуд с лампочками, насосом и датчиками. В нем растут одноклеточные водоросли. Внешне аппарат похож на большой блендер. Разработка может пригодиться в космосе для путешествий на большие расстояния для жизнеобеспечения членов экипажа. Например, водоросли можно использовать как корм для рыб, которых тоже можно выращивать на борту корабля.

На Земле выращенными в фотобиореакторе водорослями можно кормить не только рыб, но и скот. Также растения можно использовать для очистки сточных вод и создания биотоплива.

Success Rockets: краудфандинговые ракеты с разработкой на аутсорсе

В июне 2020 года Олег Мансуров, ранее известный благодаря платформе для проведения хакатонов «Актум» объявил о запуске нового проекта Success Rockets по созданию сверхлегкой ракеты для вывода малых грузов на околоземную орбиту.

Тем же планировали заниматься большинство вышеупомянутых компаний, однако «Успешные ракеты» нашли ряд частных инвесторов.

Их ракета длиной 20 метров будет весить 13 тонн и сможет выводить на орбиту не менее 250 килограмм груза. Кроме того, проект обещает минимальную стоимость запуска в расчете на килограмм груза.

Первые запуски Success Rockets запланированы на 2024 год, хотя документы на момент освещения в СМИ ещё изучались рядом заказчиков.

Лазерный радар

Еще одно космическое достижение — лидар. LIDAR — технология, которая посредством активных оптических систем получает информацию об удаленности объектов с точностью до миллиметра. Эта технология изначально была изобретена для военных целей. Первый прототип построила американская военно-промышленная авиастроительная компания Hughes Aircraft Company в 1961 году. Но широкое применение технология нашла после использования в рамках миссии «Аполлон-15» для картографирования Луны.

LIDAR состоит из трех основных компонентов: сканер, лазер и GPS-приемник. Другими элементами, играющими важную роль в сборе и анализе данных, являются фотоприемник и оптика. Суть технологии заключается в том, что система вычисляет, сколько времени требуется лучам света, чтобы попасть на объект или поверхность, отразиться от него или нее и «долететь» обратно к лазерному сканеру. Затем расстояние вычисляется с помощью формулы скорости света.

Сегодня LIDAR применяется для определения глубины водоема, поиска археологических улик на поверхности и в воде, предупреждения лесных пожаров, при лазерной коррекции зрения, в беспилотниках и iPhone 12.

Индустрия 4.0

3D-печать и ночные портреты: для чего в iPhone 12 Pro Max нужен лидар

ИТ-паспорт проектов в Роскосмосе

Проект Интегратор Продукт Технология Год
МЦ Квадрат 2022
Организация Агат (Роскосмос) 2021
ЛАНИТ Проекты ИТ-аутсорсинга ИТ-аутсорсинг 2021
Информтехника и Связь Информтехника: МиниКом DX-серия Телекоммуникационные системы IP-телефония 2021
Российские космические системы (РКС) Проекты построения комплексной ИТ-инфраструктуры ИТ-аутсорсинг, Серверные платформы 2020
Российские космические системы (РКС) ЦОД РКС ЦОД 2020
АСКОН Проекты ИТ-аутсорсинга ИТ-аутсорсинг 2020
Ростелеком-Юг Проекты построения ситуационных центров Ситуационные центры 2020
УСП Компьюлинк, НПП Мера Комплексные проекты создания инженерных систем 2020
Mind (Майнд Лабс, МайндСофт, ИнтерМайнд) Mind ВКС Видеоконференцсвязь 2019
Террасофт (Terrasoft, ТС-Консалтинг) Creatio (ранее bpm’online) BPM, CRM, SaaS — Программное обеспечение как услуга 2018
Российские космические системы (РКС) РКС: Отраслевая система мониторинга предприятий Network Health Monitoring — Мониторинг сети или управление здоровьем-производительностью ИТ-Инфраструктуры 2016
Digital Design (Диджитал Дизайн) Digital Design: Приоритет Система документационного управления СЭД, СЭД — Системы потокового распознавания 2015
Digital Design (Диджитал Дизайн) Microsoft Office SharePoint Server 2010 Корпоративные порталы, СЭД 2012
ЛАНИТ IT-Room Smart Shelter Центры обработки данных — технологии для ЦОД 2012
Digital Design (Диджитал Дизайн) Docsvision (СЭД/ECM-система) СЭД, СЭД — Системы потокового распознавания 2011
Корпорация Галактика
1С Акционерное общество 1С:Предприятие 8.3 ERP, SaaS — Программное обеспечение как услуга
Главкосмос, OneWeb
Без привлечения консультанта или нет данных
Без привлечения консультанта или нет данных Проекты ГИС ГИС — Геоинформационные системы
Московский Государственный Университет (МГУ), Федеральная служба по гидрометеорологии и мониторингу окружающей среды России (Росгидромет)
РКЦ Прогресс (Ракетно-Космический центр Прогресс ЦСКБ-Прогресс ГНПРКЦ ФГУП)
РКЦ Прогресс (Ракетно-Космический центр Прогресс ЦСКБ-Прогресс ГНПРКЦ ФГУП) Проекты ГИС ГИС — Геоинформационные системы
РКЦ Прогресс (Ракетно-Космический центр Прогресс ЦСКБ-Прогресс ГНПРКЦ ФГУП) Енисей (ракета-носитель)
Главкосмос, Сберкорус (ранее Корус Консалтинг СНГ)
НПО им. С. А. Лавочкина
Без привлечения консультанта или нет данных

Космос и спутниковые системы

  • Хронология Вселенной до появления планеты Земля
  • Тёмная материя
  • Млечный путь
  • Скорость света
  • Солнечная система
  • Земля (планета)
  • Луна
  • Венера (планета)
  • Марс (планета)
  • Астероиды
  • Научный космос
  • Космический туризм
  • Космическая медицина
  • Космический мусор, Млечный путь, Astroscale Спутник для уборки околоземного космического пространства
  • Космическое оружие
  • Международная космическая станция (МКС)
  • Российская национальная орбитальная служебная станция (РОСС)

  • Космонавтика России и СССР
  • Роскосмос (Федеральное космическое агентство)
  • Ракетно-Космический центр Прогресс
  • Энергия РКК им. С.П.Королева
  • Российские космические системы (РКС)
  • Организация Агат (Роскосмос)
  • ЦЭНКИ
  • С7 Космические транспортные системы
  • Морской старт (Sea Launch)
  • Многоразовые транспортные космические системы
  • Малые космические аппараты
  • Ракетно-космический завод
  • Объединенная ракетно-космическая корпорация (ОРКК)
  • Космокурс
  • Success Rockets
  • Лин Индастриал (Lin Indastrial)
  • Институт космических исследований РАН (ИКИ РАН)
  • ГРЦ Макеева
  • Авант — Спэйс Системс (Avant Space)
  • Федеральная космическая программа (ФКП)
  • ЕКС (Единая космическая система)
  • Байконур Космодром
  • Восточный Космодром
  • Европа (космодром в Дагестане)
  • Международная научная лунная станция (МНЛС)
  • Роскосмос: Лунный скафандр
  • Видеосистема для выхода в открытый космос
  • Орлёнок (космический корабль)
  • Союз МС пилотируемый космический корабль
  • Федерация Российский космический корабль
  • Буран (космический корабль)
  • FEDOR (Final Experimental Demonstration Object Research)
  • МГ-19 Беспилотник России для полета в космос
  • Енисей (ракета-носитель)
  • Марс-500
  • Orbital Express
  • Возврат-МКА-Л (космический аппарат)
  • Космонавтика Китая, Tiangong (космическая станция)
  • Космонавтика в Южной Корее
  • Космонавтика в Индии, GSLV (ракета-носитель)
  • Европейское Космическое Агентство (ESA)
  • Германский центр авиации и космонавтики (Deutsches Zentrum für Luft- und Raumfahrt, DLR)
  • Космическое агентство стран Латинской Америки и Карибского бассейна (Agência Latino-Americana e Caribenha do Espaço; ALCE)
  • Космонавтика Украины
  • Космонавтика США
  • Лунная программа США
  • Deep Space Gateway Лунная станция
  • Космические силы США (United States Space Force)
  • NASA, NASA DART (зонд для уничтожения астероидов)
  • Space Exploration Technologies (SpaceX), Starship, Crew Dragon, Falcon, Starlink SpaceX
  • Perseverance (марсоход)
  • Blue Origin, New Shepard, Orbital Reef
  • Virgin Galactic, Virgin Orbit — LauncherOne (ракета-носитель)
  • MADV Lockheed Martin, Lockheed Martin
  • VOX Space
  • United Launch Alliance
  • Interstellar Lab
  • Momentus Space
  • Privateer Space
  • Starlab (космическая станция)
  • Spaceport Nova Scotia

Варп-двигатель (Warp drive)

  • Космические спутники стран мира
  • ГЛОНАСС
  • ЭФИР Спутниковая система глобальной связи или Глобальная многофункциональная информационная спутниковая система (ГМИСС)
  • Сфера Космическая программа многоспутниковых систем
  • Спутниковая связь и навигация
  • Глобальные системы навигации
  • Мониторинг транспорта и навигация (рынок России)
  • Единая территориально-распределенная информационная система дистанционного зондирования Земли (ЕТРИС ДЗЗ)
  • Федеральная сеть дифференциальных геодезических станций (ДГС)
  • ЭРА-ГЛОНАСС
  • ECall (emergency call — экстренный вызов)
  • Транспортная телематика (мировой рынок)
  • Системы безопасности и контроля автотранспорта
  • Геоинформационные системы — ГИС
  • Самые интересные способы применения ГЛОНАСС/GPS
  • GPS
  • Galileo
  • BeiDou
  • Michibiki
  • IRNSS (навигационная система)
  • Mounted Assured PNT Systems (MAPS)
  • AIS Automatic Identification System — Автоматическая идентификационная система в судоходстве

Ракетно-космическая отрасль в проекте «Шоу профессий»

В рамках четвёртого выпуска проекта «Шоу профессий» зрители познакомились с российской ракетно-космической отраслью. Его участниками стали учащиеся школ, финалисты национального чемпионата WorldSkills Russia в компетенции «Инженерия космических систем», которым предстояло за ограниченное время самостоятельно разработать систему развёртывания и управления солнечными батареями малого космического аппарата — искусственного спутника Земли. Ребята также соревновались в викторине по теме «Космическая отрасль».

Они узнали много нового о производстве космических аппаратов, космической навигации, строительстве космодромов, а также о специальностях, востребованных в отрасли на примере компетенции WorldSkills Russia «Инженерия космических систем», поддерживаемой Госкорпорацией «Роскосмос». Независимым экспертом соревнования стал директор Департамента развития персонала и сопровождения проектов госкорпорации «Роскосмос» Дмитрий Шишкин. В своём приветственном слове перед началом выполнения заданий он отметил, что космонавтика — особая сфера, включающая в себя множество разных направлений, в том числе таких популярных сегодня, как робототехника, искусственный интеллект, биотехнология.

«Работа в этой сфере требует разных компетенций — это сплав мечты и технологий. С одной стороны, нужно быть мечтателем, который обладает необходимыми познаниями и широтой мышления. С другой стороны, нужно уметь довести свою мечту до конкретного результата, придумать путь, по которому до него нужно дойти. Каждый из вас наверняка мечтал о полёте в космос, сделать свой инженерный проект. И сегодня у вас такая возможность есть благодаря „Шоу профессий“, благодаря развитию инженерии космических систем», — отметил Дмитрий Шишкин.

Он посоветовал ребятам как можно больше интересоваться всем новым, что происходит в отечественной и мировой космонавтике.

Проект «Шоу профессий» реализуется Министерством просвещения Российской Федерации совместно с Институтом изучения детства, семьи и воспитания Российской академии образования и Институтом развития профессионального образования в рамках всероссийского проекта «Открытые уроки» федерального проекта «Успех каждого ребёнка» нацпроекта «Образование». В ходе шоу школьников знакомят с разными профессиями, в том числе с теми, которые можно получить в профессиональных образовательных организациях.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector