Реферат на тему: планеты солнечной системы
Содержание:
- Представление о строении мира в античные времена
- Молодой Юпитер
- Загадочное шаровое скопление
- Темы исследовательских работ и проектов о Луне
- Уран и Нептун
- Гелиоцентрическая система мира
- Самая яркая сверхновая
- Как развивалась отечественная космонавтика
- Новый тип экзосистемы
- Развитие радиоастрономии
- Современная космонавтика и ее достижения
- Астроном кто это такой, особенности профессии, чем занимается
- Темы исследовательских работ и проектов о Солнечной системе
Представление о строении мира в античные времена
В древности у людей были свои представления о строении мира, которые не имели ничего общего с современными теориями. Жители Земли в то время многого не понимали, для них все, что было вокруг, являлось загадкой. Люди опирались на свои ощущения и на то, что видели собственными глазами вокруг себя: небо, звезды, Солнце, Луну, Землю, природные явления. И, конечно же, всему этому пытались дать свое объяснение. Жители планеты видели Вселенную как что-то целое, имеющее две совершенно разные части: Землю и небо.
У древних народов были самые невероятные представления о строении мира. Жители Древней Индии изображали Землю в форме полусферы, которая лежит на спинах четырех слонов. Животные расположились на панцире черепахи, плавающей в огромном океане. Вокруг нее кольцом свернулась змея, символизирующая околоземное пространство.
Древние египтяне имели несколько теорий о строении мира. Согласно первой, Земля — это большая вытянутая долина, а в самом ее центре раскинулся Египет. Небо было похожим на крышу из железа, которую подпирали столбы. К самому небесному куполу подвешены звезды, напоминающие маленькие светильники. Согласно другой картинке, внизу изображался бог Земли Геба, над ним богиня Нуд, покровительница неба. По бокам — два корабля бога Солнца Ра, которые указывают путь Солнцу по небесному своду.
Древние славяне видели планету в форме большого яйца. Они считали, что мир разделен на три части. Посредине находится Земля, на которой находятся люди и все, что их окружает. Под ней расположен нижний мир – пекло, сверху – небеса в виде купола со звездами. Народы Древней Руси считали, что плоская Земля держится на спинах трех китов, которые плавают по просторам мирового океана.
Вавилонцы видели Землю, похожую на выпуклый остров, окруженный океаном. Древним грекам Земля казалась похожей на диск. Со всех сторон его омывал океан. А вверху по медному небу двигалось Солнце.
В виде плоского треугольника видели Землю древние китайцы. Над ним на высоких столбах нависает небо. Какими бы не были античные представления о строении мира, все они напрямую были связаны с наблюдениями человека с поверхности Земли.
- Земля неподвижна и является центром Вселенной.
- Центр Вселенной – Солнце и планета движется вокруг него и вращается вокруг своей оси.
Вторая теория сильно противоречила религиозным взглядам и не имела математического подтверждения, именно поэтому в астрономии на протяжении многих лет считалось, что Земля все-таки неподвижна, на основании чего была создана геоцентрическая система мира. Название получила от имени греческой богини Земли — Геи. Мыслители того периода утверждали, что центр геоцентрической системы мира – это Земля, которая владела асимметрией и центральной осью. У нее были опоры, ими служили слоны, кит и даже черепаха. Со временем теория меняла свою структуру и самой обдуманной она стала во времена Пифагора. Ученый предположил, что Земля имеет шарообразную форму. В дальнейшем с этой точкой зрения согласились и другие мыслители.
Немаловажную роль в развитии модели геоцентрической системы мира внесли такие ученые, как Аристотель, Птолемей.
Аристотель одним из первых сумел доказать, что Земля – это все-таки шар. Во время лунного затмения планета отбрасывала на Луну круглую тень. Звезды, расположившиеся низко над линией горизонта, рано или поздно исчезают под ней, в то время как с другой стороны появляются новые – это говорит о выпуклой поверхности. Мыслитель считал, что вокруг шарообразной Земли вращаются прозрачные сферы, к которым крепились Луна, Венера, Меркурий, Сатурн, Марс, Юпитер и Солнце. На 8 сфере были закреплены все звезды, а на 9 по его мнению находилось что-то на подобие небесного мотора, который и приводил в движение все сферы. Система мира, созданная Аристотелем, «убрала» из мироздания всех богов и мифических существ.
Птолемей продолжал утверждать, что Земля неподвижна, все небесные тела вращаются вокруг нее. Земной шар был центром мироздания. В работах ученого присутствовали доказательства, что планета находится в самом центре всего космического пространства, но при этом ее размеры были значительно меньше других небесных тел. Разницу в размерах он объяснял тем, что все звезды с земной поверхности человек видит одинаково, а расстояния до них огромные, если сравнивать их с размерами Земного шара.
Мыслитель утверждал, если бы Земля двигалась, то происходило бы ее смещение. А так как этого нет, значит, она неподвижна. Также он указал, что по отношению к планете все тела падают вертикально, поэтому она и является центром всего. Благодаря Птолемею появились понятия «верх» и «низ». «Верх» — представляет собой направление от центра Земного шара, соответственно «низ» — направление к центру.
Молодой Юпитер
Этот Юпитер очень горяч
Горячие юпитеры — газовые гиганты, которые каким-то образом оказались на близком расстоянии от своих звезд. Некоторые из них заперты на таких тесных орбитах, что гравитация звезды поедает небольшие тела слой за слоем, а возможная планета PTFO8-8695 b вращается так близко, что завершает орбиту каждые 11 часов.
PTFO8-8695 b также является одной из самых молодых планет, поскольку ее звезде, PTFO8-8695, всего два миллиона лет. Это парадоксально мало — большинству горячих юпитеров у звезд миллиарды лет.
Астрономы думают, что все горячие юпитеры мигрируют, поскольку вблизи звезды слишком горячо, чтобы газовые гиганты могли образоваться. Газовые планеты сливаются в тихих прохладных условиях; точно так же, гиганты в нашей Солнечной системе находятся за поясом астероидов.
Судьба PTFO8-8695 b неизвестна, но не так уж и пессимистична. Похоже, некоторые горячие юпитеры оседают на стабильных орбитах и, возможно, смогут прожить достаточно долго.
Загадочное шаровое скопление
Ученые обнаружили шаровые скопления звезд
Наш Млечный Путь большой, но имеет всего 150 скоплений в своем распоряжений. Более массивные галактики привлекают больше скоплений, а ближайший галактический монстр — Центавр А (NGC 5128), эллиптическая галактика в 12 миллионах световых лет от нас, имеет 2000 шаровых прихлебателей.
Но интересны далеко не все скопления Центавра А. Как правило, масса скопления соизмерима с его яркостью, и самые яркие источники также являются самыми массивными. Но в процессе изучения 125 скоплений в Центавре А астрономы обнаружили, что некоторые обладают куда большей массой, чем мы видим.
Ученые предложили два одинаково любопытных решения: темная материя или черные дыры. Шаровые скопления не так часто содержат темную материю, в отличие от галактик, но эти несколько, возможно, с помощью непонятного механизма ее получили. Черные дыры также достаточно массивны, чтобы произвести наблюдаемый эффект. Если это так, Центавр А становится космическим минным полем с жуткими прожорливыми черными дырами на периферии.
Темы исследовательских работ и проектов о Луне
Примерные темы проектов по астрономии о луне:
Темы исследовательских работ и проектов о Марсе
Всё, что мы знаем о планете Марс
Есть ли жизнь на Марсе?
Загадочная планета Марс
И на Марсе будут яблони цвести…
Исследование Марса автоматическими межпланетными станциями
Колонизация Марса и его терраформирование
Марс
Планета Марс и ее спутники
Современные исследования Марса
Тайна красной планеты Марс.
Темы исследовательских работ и проектов о Юпитере и Сатурне
Возможна ли жизнь на спутнике планеты Юпитер — Европе?
Космическое путешествие к Юпитеру
Наблюдение за Юпитером и его спутником
Планета-гигант Юпитер
Выявление характерных признаков планеты Сатурн по данным астрономических наблюдений
Планета Сатурн.
Уран и Нептун
Эти две планеты часто
называют гигантами-близнецами. И они на самом деле очень похожи: Уран немного
больше (его радиус 26540 километров, Нептун — 24300 километров), но Нептун
более массивный — его масса 17,25 масс Земли, в то время как у Урана всего
14,6. С этими небольшими различиями средняя плотность двух планет почти равна:
1,71 г/см3 для Урана и 1,72 г/см3 для Нептуна.
Эти планеты похожи по
скорости вращения вокруг своей оси, и обе достаточно велики: у Урана солнечный
день, который длится около 10 часов, в то время как у Нептуна день немного
длиннее. Интересно, что Уран заметно сжат (полярное сжатие 1/17), чего нельзя
сказать о Нептуне.
Самое главное различие между Ураном и Нептуном — это, конечно, период их циркуляции вокруг Солнца. Уран — 84 земных года, Нептун — 164,8 года. Это означает, что с момента открытия Нептуна (1846 г.) на этой планете не было ни одного года!
Интересной особенностью Урана
является то, что он вращается вокруг Солнца, как будто на его стороне: его ось
вращения образует угол с плоскостью орбиты 98 .
Уран, в связи с весьма
случайным событием, был гораздо лучше исследован, чем его «собратья».
В 1977 году «Вояджер-2» был запущен для исследования Юпитера и
Сатурна после его миссии и был достаточно хорош для полета вблизи Урана: через
8,5 лет после запуска «Вояджер-2» «наблюдал» за Ураном с
расстояния всего 80 000 км, а один из его спутников — Миранда — с расстояния
всего 28 000 км, что в 11 раз ближе, чем Луна, которую мы видим. В то время
аппарат находился на расстоянии 2,7 миллиарда километров от Земли, а
радиосигнал от него составлял два с половиной часа!
Атмосфера Урана и Нептуна,
вероятно, наполовину водородная, с метаном (около 20%) и аммиаком (не менее 5%)
также присутствуют. Остальное — это гелий, возможно этан, ацетилен и водяной
пар. О внутренней структуре этих планет можно только догадываться. Большинство
ученых сходятся во мнении, что содержание водорода и гелия там не превышает
20%, а остальное приходится на более тяжелые элементы, вероятно,
сконцентрированные в железо-силикатном ядре, которое составляет около 60% массы
планеты.
До начала 1980-х годов человечество знало, что у Урана пять спутников, а у Нептуна — два. Однако вышеупомянутый «Вояджер-2» обнаружил ещё десять небольших небесных тел, вращающихся на орбите Урана. Эти спутники, однако, не представляют интереса, потому что это всего лишь валуны, напоминающие астероиды, которые когда-то путешествовали по Вселенной, а теперь захвачены магнитным полем планеты
Необходимо обратить внимание на спутник Урана «Миранда» (самый маленький из пяти — его диаметр около 500 км). Кажется настолько необычным, что ученые выразили подозрение, что Миранда сначала разбилась на куски, а затем снова собралась в беспорядке
Крупнейший из двух спутников Нептуна, Тритон, принадлежит к группе крупнейших спутников планет Солнечной системы — его радиус около 2000 км. Он движется вокруг Нептуна в направлении, которое меняет направление вращения планеты, предполагая, что Тритон — это объект, захваченный Нептуном, а не объект, образованный вместе с ним. И Уран, и Нептун имеют кольца той же природы, что и Юпитер и Сатурн.
Гелиоцентрическая система мира
В 1543 году мир увидел работу польского астронома Н. Коперника «О вращении небесных сфер». Ученый описал гелиоцентрическую теорию и подтвердил ее физическими расчетами. Исходя из теории — Земля движется. Она, как и остальные планеты, вращается вокруг некого центра, которым считалась центральная точка орбиты.
Причиной смены дня и ночи на Земле и движения Солнца по небосводу является вращение планеты вокруг своей оси.
Коперник сделал следующие выводы:
- Земля перемещается, периодически то приближаясь, то отдаляясь от других планет Солнечной системы, в результате чего эти планеты совершают как будто бы попятное движение.
- В результате периодического смещения земной оси весеннее равноденствие с каждым годом приходит немного раньше.
- Сфера звезд находится на огромном расстоянии по отношению к расстояниям между планетами, поэтому годичные параллаксы не наблюдаются.
Гелиоцентрическая модель позволила более точно оценить размеры планет и расстояния до них. Коперник определил примерные размеры Солнца и Луны, а также указал время (88 суток), которое необходимо Меркурию, чтобы совершить полный оборот вокруг Солнца.
Самая яркая сверхновая
Ученые подозревают, что это бывшая сверхновая, в несколько раз побивающая предыдущий рекорд — настолько дикая, что высвободила во Вселенную ярость 600 миллиардов солнц
Обсерватория Университета штата Огайо с грозным названием All Sky Automated Survey for SuperNovae (ASAS-SN, созвучное с «асассин», «автоматическое обследование всего неба на предмет сверхновых») недавно обнаружила самую нелепую смерть звезды из всех, что когда-либо наблюдали.
В 2015 году двойной телескопический массив «Брут» и «Кассий» наткнулись на ничем не примечательное пятно света. Последующие наблюдения выявили странный спектр света, исходящего в указанном месте, и наконец Южноафриканский большой телескоп подтвердил облако чрезвычайно яркого газа с неопознанным 15-километровым объектом в центре.
ASASSN-15lh, как ее назвали, настолько великолепна, что превосходит пределы нашего научного понимания. Астрономы не могут нормально объяснить силу этой сверхновой, но у них есть несколько идей. Возможно, это дикая агония одной из самых массивных звезд во Вселенной. Выходит, эти элитные звезды существуют, просто мы, возможно, пока ни одной не видели.
Точно так же, в качестве объяснения может подойти миллисекундный магнетар. Эти объекты вращаются с невероятной скоростью. Если преобразовать эту огромную энергию вращения в свет, может получиться как раз такой взрыв, который наблюдали астрономы.
Как развивалась отечественная космонавтика
История развития отечественной космонавтики берет свое начало с середины ХХ столетия. В 1946 году основали Опытно-конструкторское бюро №1, его задачей стала разработка спутников, ракет-носителей и баллистических ракет. Спустя 10 лет силами бюро была спроектирована первая ракета-носитель, с помощью которой в космос был запущен первый искусственный спутник планеты Земля.
После запуска искусственного спутника развитие космонавтики приобрело совершенно другие темпы. Спустя некоторое время в космическое пространство был запущен еще один спутник, но на его борту уже находилось живое существо – собака по имени Лайка.
Запуски межпланетных станций позволили заняться исследованием Луны, а уже в 1959 году космический аппарат достиг поверхности спутника Земли. В это время Советский Союз получил снимки обратной стороны Луны, что позволило ученым присвоить названия практически всем основным формам рельефа на спутнике.
Первая фотография обратной стороны Луны
Важным событием в развитии отечественной космонавтики стал полет первого человека в космос. Состоялось это 12 апреля 1961 года на корабле «Восток» пилотируемым Юрием Гагариным. В 1965 году человек впервые вышел в открытый космос.
До 1991 года отечественная космонавтика радовала множеством открытий и достижений:
- 1971 г – запустили первую во всем мире орбитальную станцию «Салют-1» с экипажем на борту.
- 1977 г – космический аппарат доставил с Луны образцы грунта.
- Были запущены межпланетные станции, часть из которых совершили посадку на поверхность Венеры, проанализировали ее грунт и сделали фотосъемку.
- Также станции были запущены к Марсу, что позволило сфотографировать поверхность планеты и измерить химический состав атмосферы.
Запуск первого искусственного спутника Земли
4 октября 1957 года стал знаменательным для всей мировой космонавтики. В этот день был осуществлен запуск первого в мире искусственного спутника Земли. Это событие стало началом изучения космического пространства и открыло новые возможности в развитии не только отечественной, но и мировой космонавтики.
Космодром Байконур, находящийся в Казахстане, стал площадкой для первого запуска первого искусственного спутника Земли. Для этого использовалась ракета-носитель Р-7. Спутник пребывал в космическом пространстве 92 дня, 1440 раз облетел вокруг Земли, что позволило ученым впервые произвести изучение верхних слоев ионосферы. Также была получена достаточно важная информация о работе аппаратуры в космических условиях и произведена проверка расчетов.
Первый искусственный спутник Земли
Новый тип экзосистемы
Ученые поняли, что обнаружили самую большую солнечную систему, известную на сегодняшний день
Когда астрономы открыли планету 2MASS J2126-814, она была похожа на мир, существующий совершенно отдельно, сам по себе. Эта планета, блуждающий газовый гигант в 12-14 раз массивнее Юпитера, обречена вечно слоняться по космическим просторам в поисках солнца, которое сможет назвать своим.
Но у этой истории счастливый конец. Астрономы нашли другой объект, следующий за отверженной планетой, красный карлик по имени TYC 9486-927-1. Оба тела в 100 световых годах от Земли и, похоже, движутся вместе — выходит, планета вовсе не одинока.
Родительская звезда расположилась в 1 000 000 000 000 километрах от планеты. Каково это — представьте себе формы жизни, которые вглядываются в ночное небо и не могут отличить собственную звезду от других подобных точек на небосводе.
2MASS J2126-8140 вращается на орбите в 140 раз больше орбиту Плутона, который находится в 6 миллиардах километрах от Солнца. Такое положение не могло бы вылиться из традиционного метода рождения солнечной системы в процессе коллапса диска, и ученые считают, что эти два тела появились из одной гигантской струйки межгалактического газа.
Развитие радиоастрономии
Первые пятнадцать лет радиоастрономия почти не развивалась. Многим было еще не ясно, принесут ли радиометоды какую-нибудь существенную пользу астрономии.
Разразившаяся вторая мировая война привела к стремительному росту радиотехники. Радиолокаторы были приняты на вооружение всех армий. Их совершенствовали, всячески стремились повысить чувствительность, вовсе не предполагая, конечно, использовать радиолокаторы для исследования небесных тел.
Советские ученые академики Л.И. Мандельштам и Н.Д. Папалекси теоретически обосновали возможность радиолокации Луны еще в 1943 году.
Это было первое радиоастрономическое исследование в Советском Союзе. Два года спустя (в 1946 году) оно было проверено на практике сначала в США, а затем в Венгрии. Радиоволны, посланные человеком, достигли Луны и, отразившись от нее, вернулись на Землю, где были уловлены чувствительным радиоприемником.
Последующие десятилетия — это период необыкновенно быстрого прогресса радиоастрономии. Его можно назвать триумфальным, так как ежегодно радиоволны приносят из космоса удивительные сведения о природе небесных тел. На сравнительно коротком интервале времени, начиная с 50-х гг., в радиоастрономии достигнут большой прогресс. Разрешение от 1-10 уг. мин. дошло до 0.1 тыс .уг. сек и значительно превосходит возможности оптической астрономии. Чувствительность от 1-10 Ян повысилась до 1 мкЯн. Наблюдения проводятся в диапазоне от 0.01 до 300-400 ГГц. Одновременно принимаемая полоса частот от 100-200 кГц доведена до 1-10 ГГц. Радиоастрономия имеет сопоставимые, а по некоторым проблемам и большие по сравнению с оптикой, возможности проникновения в глубины Вселенной.
Современная космонавтика и ее достижения
Огромный прорыв сделала современная космонавтика в своем развитии. Сегодня о космосе говорится как о реальном, а не как о чем-то сказочно далеком. Запуск современного космического корабля, полеты в космическое пространство стали хоть и дорогостоящими, но обычными явлениями в жизни российского государства.
Не вызывает ни у кого удивления космический туризм, когда за определенную плату можно полетать на космическом корабле. На высоком уровне проходят космические исследования. Современные ученые работают над созданием солнечных электростанций, разрабатывают технологи влияния на климат Земли.
С 2016 года начал свою работу космодром «Восточный» в Амурской области. Это позволило России совершать запуски космических кораблей со своей территории и не зависеть от других стран.
В недалеком будущем в планах запуск пилотируемых кораблей на поверхность Луны, беспилотных космических аппаратов для исследований космического пространства, реализация программы «Морской старт».
Приоритетной задачей для России стало дальнейшее развитие отечественной космонавтики, изучение возможностей современной космической отрасли и выведение ее на передовые мировые рубежи.
Астроном кто это такой, особенности профессии, чем занимается
Как вы уже догадались, в сегодняшней статье речь пойдёт о достаточно необычной профессии-астроном. Вы узнаете, что это за профессия, чем занимается астроном, основные плюсы и минусы его трудовой деятельности.
Чтобы объяснить, астроном кто это такой, определение возьмём из википедии.
Астроном — это специалист, занимающийся изучением и анализом небесных тел, исследует взаимосвязь положения звёзд и вселенных.
- О профессии
- Чем занимается
- Где этому учат?
- Плюсы и минусы профессии астроном
- Подведём итоги
О профессии
Эта профессия достаточно древняя, потому что людей во все времена завораживало космическое пространство.
Однако космос достаточно большой, чтобы его исследовал специалист только одной направленности, именно поэтому профессиональный спектр астрономов достаточно обширен.
Существует две категории специалистов представленной профессии:
- Астроном-теоретик. Данный вид специалистов в основном занимается изучением теоретического материала, они изучают историю вселенной и привносят в уже имеющиеся данные новые открытия. Их деятельность заключается в анализе и синтезе космических гипотез, нуждающихся в доказательстве.
- Астроном-наблюдатель. Эти специалисты изобретают способы изучения вселенных и звёзд, разрабатывают методики, позволяющее посмотреть на небесные тела под новым углом, облегчить работу наблюдения за ними.
Чем занимается
Как мы уже знаем, астрономы изучают космическое пространство. Но как именно они осуществляют наблюдения?
Чтобы ответить на поставленный вопрос, рассмотрим, что входит в обязанности и задачи специалиста представленной профессии:
- Знать о процессах, проходящих в космосе.
- Отлично понимать точные науки.
- Изучать расположение, движение и другие характеристики небесных тел.
- Отслеживать перемещения звёзд и других представителей космического пространства.
- Наблюдать за появлением новых небесных тел, контролировать исчезновение старых.
Таким образом, можно утверждать, что функционал работы астронома очень обширен. Именно благодаря работе этих специалистов, мы имеем представление о космосе в целом, а научные данные о космическом пространстве и небесных телах пополняются каждый день.
Поэтому профессия астроном очень важна. Иногда они не только совершают открытия в космической сфере, но и осуществляют настоящий прорыв в технической области, изобретая различные установки для изучения небесных тел.
Где этому учат?
Чтобы стать по-настоящему профессиональным астрономом, для начала необходимо получить специальность на механико-математическом или физическом факультете университета.
Далее необходимо пройти практику по специальности, получить опыт работы.
Но на этом своё обучение заканчивать не стоит, нужно понимать, что только постоянное совершенствование своих знаний, отточка умений позволяют всегда быть востребованным специалистом.
Плюсы и минусы профессии астроном
В трудовой деятельности астронома имеется ряд своих положительных и отрицательных сторон.
Начнём с плюсов:
- Возможность новых открытий, которые в дальнейшем помогут в более подробном изучении вселенной и небесных тел.
- Изучение неизведанного и завораживающего космического пространства.
- Возможность роста по карьерной лестнице.
- Возможность знакомства с интересными людьми.
- Довольно высокая заработная плата.
- Слава и всеобщее признание. Астрономов часто зовут на телешоу, пишут о них в газетах и журналах.
- Путешествия по миру.
Теперь рассмотрим минусы профессии:
- Необходимость постоянного обучения.
- Наблюдение за звёздами достаточно долгий и изнурительный процесс.
- Иногда рабочий день становится ненормируемым и совсем не остаётся времени на отдых.
- Необходимость постоянно повышать свою квалификацию.
Подведём итоги
В сегодняшней статье нам удалось ответить на вопрос: Астроном это кто? Благодаря данной статье, мы познакомились с функционалом профессии астроном, узнали, чем занимается специалист представленной профессии, выяснили каковы основные плюсы и минусы трудовой деятельности астронома.
Наша статья будет полезна детям, которые хотят связать свою жизнь с изучением космического пространства.
Темы исследовательских работ и проектов о Солнечной системе
Газовые гиганты Солнечной системы
Жизнь на планетах Солнечной системы
Изучение названий небесных тел Солнечной системы
Рождение Солнечной системы
Модель Солнечной системы
На какой из планет Солнечной системы можно построить взлетно-посадочный модуль с жилым комплексом?
Планеты Солнечной системы
Планеты земной группы в картинах великих художников
Преобразование планет Солнечной системы
Проблемы полетов к планетам Солнечной системы
Путешествие по Солнечной системе
Сколько планет в Солнечной системе?
Солнечная система
Солнечная система: спутники планет-гигантов
Спор учёных: сколько планет в нашей Солнечной системе
Строение Солнечной системы
Существуют ли планеты вне Солнечной системы?
Тайны Солнечной системы
Темы исследовательских работ и проектов о Земле
А все-таки она вертится
Атмосфера Земли: история освоения
Белые ночи
Взаимодействие Солнца и Земли
Влияние космических процессов на ритмы Земли
Возникновение жизни на Земле
Гравитационные силы и их значение в масштабах планеты Земля
Если бы Земля была квадратной
Загадки северных сияний
Зарождение Земли
Затмения с Земли и из космоса
Земля и её соседи
Использование космических съемок для определения площадей земельных участков
Как тебе живется, планета Земля?
Космодромы планеты Земля
Космические аппараты для дистанционного изучения Земли.
Космические исследования Земли.
Магнитное поле Земли
Меняющаяся Земля
Мифы и гипотезы о происхождении и строении Земли
Планета Земля в азбуках и викторинах (поверхность Земли)
Полезные ископаемые Земли и космоса
Притяжение Земли
Происхождение Земли
Происхождение Земли и человека (на основе мифов разных народов)
Радиационные пояса Земли. Опасно ли летать в космос?
Радуга — одно из самых красивых явлений природы
Рождение планеты Земля
Полярное сияние — что это?
Почему появляется радуга
Создание системы защиты Земли от потенциально опасных космических объектов
Тайны третьей планеты
Теории возникновения Земли
Эволюция представлений о природе полярных сияний
Эмпирические доказательства вращения Земли